• Title/Summary/Keyword: Box girders

Search Result 149, Processing Time 0.021 seconds

Structural analysis of a prestressed segmented girder using contact elements in ANSYS

  • Lazzari, Paula M.;Filho, Americo Campos;Lazzari, Bruna M.;Pacheco, Alexandre R.
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.319-327
    • /
    • 2017
  • Studying the structural behavior of prestressed segmented girders is quite important due to the large use this type of solution in viaducts and bridges. Thus, this work presents a nonlinear three-dimensional structural analysis of an externally prestressed segmented concrete girder through the Finite Element Method (FEM), using a customized ANSYS platform, version 14.5. Aiming the minimization of the computational effort by using the lowest number of finite elements, a new viscoelastoplastic material model has been implemented for the structural concrete with the UPF customization tool of ANSYS, adding new subroutines, written in FORTRAN programming language, to the main program. This model takes into consideration the cracking of concrete in its formulation, being based on fib Model Code 2010, which uses Ottosen rupture surface as the rupture criterion. By implementing this new material model, it was possible to use the three-dimensional 20-node quadratic element SOLID186 to model the concrete. Upon validation of the model, an externally prestressed segmented box concrete girder that was originally lab tested by Aparicio et al. (2002) has been computationally simulated. In the discretization of the structure, in addition to element SOLID186 for the concrete, unidimensional element LINK180 has been used to model the prestressing tendons, as well as contact elements CONTA174 and TARGE170 to simulate the dry joints along the segmented girder. Stresses in the concrete and in the prestressing tendons are assessed, as well as joint openings and load versus deflection diagrams. A comparison between numerical and experimental data is also presented, showing a good agreement.

A Study on the Estimation of Probabilistic Repair.Reinforcement Cycles from Rating Curve of Steel Girder Bridges (강재 교량의 노후화에 따른 확률적 보수.보강 주기 추정에 관한 연구)

  • Kim, Hyun-Bae;Kim, Yong-Su
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.2
    • /
    • pp.102-110
    • /
    • 2009
  • The cost for maintenance of bridge structures such as repair or reinforcement is increasing. In addition, the efforts for inspection of bridge structures is becoming more important since the proper repair or reinforcement should be performed to save the maintenance cost and ensure the safety for public infrastructure. Therefore, it is studied on this paper to estimate the repair or reinforcement cycles using probabilistic approach for the steel-box girders of bridge superstructure. In addition, a computer simulation program is uniquely developed based on probabilistic approach to calculate the cycles derived from the function of age of bridge and performance rating curve which were previously studied. In order to ensure the reliability of results and appropriateness of the model, statistical analyses were performed. Also, the results were compared and proved to be similar with ones from previous statistical data related to the repair or reinforcement cycles. The results from this study is expected to be useful for the determination of proper time to repair or reinforce the bridge structure and raise the safetyness of bridge structure in advance.

Applicability Evaluation of Precast Deck to the Maglev Guideway System : Mock-Up Construction Test (프리캐스트 바닥판의 자기부상열차 가이드웨이 시스템 적용성 평가 : 모의 시공 실험)

  • Jin, Byeong-Moo;Kim, In-Gyu;Kim, Young-Jin;Oh, Hyung-Chul;Ma, Hyang-Wook;Lee, Yung-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.57-60
    • /
    • 2008
  • Maglev is a system that a train runs levitated above a rail. Therefore it is very important to maintain a constant levitation gap for achieving serviceability and ride comfort. This study is a cooperation research subject of the 3-1 subject, performance improvement of maglev track structures, of the Center for Urban Maglev Program in Korea, started in 2006. The aim of this study is development of rapid constructions of bridge superstructure for maglev. At present, precast deck is widely used because of its superiority to cast-in-place concrete on quality and the term of works. The research group suggested basic systems of maglev guideway with PSC-U type and trapezoidal open steel box type girder, and precast deck, cooperating with Korea Railroad Research Institute, the managing institute of the 3-1 subject. In this study, a mock-up consisted of girders, decks and rail was fabricated and test was performed for constructability, serviceability and maintenance evaluation of PSC U-type girder, precast deck, and new guide rail system.

  • PDF

Design Comparison of Composite Girder Bridges Designed by ASD and LRFD Methods (허용응력설계법 및 하중저항계수설계법에 의한 강합성 거더교 설계결과 비교)

  • Cho, Eun-Young;Shin, Dong-Ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.447-456
    • /
    • 2009
  • The design comparison and flexural reliability analysis of continuous span composite plate girder bridges are performed. The girders are designed by the methods of allowable stress design (ASD) and load and resistance factor design (LRFD). For the LRFD design, the design specification under development mainly by KBRC, based on AASHTO-LRFD specification in case of steel structures, is applied with the newly proposed design live load which has been developed by analyzing domestic traffic statistics from highways and local roads. For the ASD based design, the current KHBDC code with DB-24 and DL-24 live loads is used. The longest span length for the 3-span continuous bridges with span arrangement ratio of 4:5:4 is assumed to be from 30 m to 80 m. The amount of steel, performance ratios, and governing design factors for the sections designed by the ASD and LRFD methods are compared. In the reliability analysis for the flexural failure of the sections designed by two methods, the statistical properties on flexural resistance based on the yield strength statistics for over 16,000 domestic structural steel samples are applied.

A Study on the Fatigue Strength of the Welded Joints in Steel Structures(II) (강구조물(鋼構造物)의 용접연결부(鎔接連結部)의 피로강도(疲勞强度)에 관한 연구(研究)(II))

  • Park, Je Seon;Chung, Yeong Wha;Chang, Dong Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 1986
  • Welded connectors of the cover plates, the transverse stiffeners of the plate girders, and the gusset plates of the plates girders or box girders, were selected as studying objects. A simplified method of drawing the S-N curves in these welded joints by a computer program without the direct fatigue tests was established. The plots on the S-N curve using the values from the practical fatigue tests were compared with the results from the method of the computer programming. The results of these studies are as follows. It appeared that the fatigue life by calculation method was a little less than the practical fatigue life from the actual tests. The latter values included both life $N_c$ of occurrence of initial crack $a_i$ and the life $N_p$ of propagation of critical crack. On the other hand, the former values included only the life $N_p$. Therefore, these results should be considered as justifiable ones. Since the difference between the two results was not significant, the results by calculation method should be in the conservation side when the safety of the structures was considered. Consequently, the results by calculation method should be applicable to the fracture fatigue design of structure. For reference, the same fatigue tests were performed with the specimens of 3 pieces in each case made of the low-strength steel, SS 41. The results went unexpected showing that the fatigue strength was lower in the case of low-strength steel. That is, in the case of the cover plate, the fatigue strength became slowly higher than the case of high-strength steel, SWS 50. That was observed when the maximum testing stress was higher than $14kg/mm^2$. In addition, in the case of the transverse stiffener, the fatique strength became rapidly higher than the case of SWS 50. That was observed when the maximum testing stress was lower than $31kg/mm^2$. It was thought that more such fatigue tests should be performed for more reliable results.

  • PDF

Age Dependent Behaviors of Composite Girders Subjected to Concrete Shrinkage and Creep (건조수축과 크리프에 의한 합성형 거더의 재령종속적 거동)

  • Ahn, Sung-Soo;Sung, Won-Jin;Kang, Byeong-Su;Lee, Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.109-116
    • /
    • 2006
  • An incremental approach to predict the time dependent flexural behavior of composite girder is presented in the framework of incremental finite element method. Age dependent nature of creep, shrinkage, and maturing of elastic modulus of concrete is prescribed in the incremental tangent description of constitutive relation derived based on the first order Taylor series expansion applying to the total from of stress-strain relation. The loop phenomenon in which age dependent nature of concrete causes stress redistribution and it causes creep in turn is taken into account in the formulation through the incremental representation of constitutive relation. The developed algorithm predicts the time dependent deflections of 4.8m long two span double composite box girder subjected to shrinkage, maturing of elastic modulus, and creep initially induced by self weight. Comparison shows a good agreement between the predicted and measured results.

Discrete Optimum Design of Sinusoidal Corrugated Web Girder (사인형 주름웨브보의 이산화 최적구조설계)

  • Shon, Su Deok;Yoo, Mi Na;Lee, Seung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.671-682
    • /
    • 2012
  • The use of sinusoidal corrugated web girder for the box-type girders and gable steel main frames has recently been increasing very much. The reasons are that the thin web of the girder affords a significant weight reduction compared with rolled beam and welded built-up girder, and that corrugation prevents the buckling failure of the web. Improvements of the automatic fabrication process makes mass production of the corrugated web and unit possible, and applications of this girder have been extended considerably. Thus, the research for the optimum design processer considering the production data is needed practically. For doing this research, we develope the discrete optimum structural design program in consideration of production list data for the research, and the program apply to the single girder under the uniform load and the concentrated load as numerical example. We consider objective function as minimum weight of the girder, and use slenderness ratio, stress of flanges and corrugated web, and the girder deflection as the constraint functions. And also the Genetic Algorithms is adopted to search the global minimum point by using the production list as a discrete design variable. Finally, to verify the optimality of the design, we conduct a comparison of the results of the discrete optimum design with those of the continuous one, and also analyze the characteristics of the optimum cross-section.

Collapse Analysis of Ultimate Strength Considering the Heat Affected Zone of an Aluminum Stiffened Plate in a Catamaran (카타마란 알루미늄 보강판의 열영향부 효과를 고려한 최종강도 붕괴 해석)

  • Kim, Sung-Jun;Seo, Kwang-Cheol;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.542-550
    • /
    • 2020
  • The use of high-strength aluminum alloys for ships and of shore structures has many benefits compared to carbon steels. Recently, high-strength aluminum alloys have been widely used in onshore and of shore industries, and they are widely used for the side shell structures of special-purpose ships. Their use in box girders of bridge structures and in the topside of fixed platforms is also becoming more widespread. Use of aluminum material can reduce fuel consumption by reducing the weight of the composite material through a weight composition ratio of 1/3 compared to carbon steel. The characteristics of the stress strain relationship of an aluminum structure are quite different from those of a steel structure, because of the influence of the welding[process heat affected zone (HAZ). The HAZ of aluminum is much wider than that of steel owing to its higher heat conductivity. In this study, by considering the HAZ generated by metal insert gas (MIG) welding, the buckling and final strength characteristics of an aluminum reinforcing plate against longitudinal compression loads were analyzed. MIG welding reduces both the buckling and ultimate strength, and the energy dissipation rate after initial yielding is high in the range of the HAZ being 15 mm, and then the difference is small when HAZ being 25 mm or more. Therefore, it is important to review and analyze the influence of the HAZ to estimate the structural behavior of the stiffened plate to which the aluminum alloy material is applied.

Behavior of Hollow Box Girder Using Unbonded Compressive Pre-stressing (비부착 압축 프리스트레싱을 도입한 중공박스 거더의 거동)

  • Kim, Sung Bae;Kim, Jang-Ho Jay;Kim, Tae Kyun;Eoh, Cheol Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.201-209
    • /
    • 2010
  • Generally, PSC girder bridge uses total gross cross section to resist applied loads unlike reinforced concrete member. Also, it is used as short and middle span (less than 30 m) bridges due to advantages such as ease of design and construction, reduction of cost, and convenience of maintenance. But, due to recent increased public interests for environmental friendly and appearance appealing bridges all over the world, the demands for longer span bridges have been continuously increasing. This trend is shown not only in ordinary long span bridge types such as cable supported bridges but also in PSC girder bridges. In order to meet the increasing demands for new type of long span bridges, PSC hollow box girder with H-type steel as compression reinforcements is developed for bridge with a single span of more than 50 m. The developed PSC girder applies compressive prestressing at H-type compression reinforcements using unbonded PS tendon. The purpose of compressive prestressing is to recover plastic displacement of PSC girder after long term service by releasing the prestressing. The static test composed of 4 different stages in 3-point bending test is performed to verify safety of the bridge. First stage loading is applied until tensile cracks form. Then in second stage, the load is removed and the girder is unloaded. In third stage, after removal of loading, recovery of remaining plastic deformation is verified as the compressive prestressing is removed at H-type reinforcements. Then, in fourth stage, loading is continued until the girder fails. The experimental results showed that the first crack occurs at 1,615 kN with a corresponding displacement of 187.0 mm. The introduction of the additional compressive stress in the lower part of the girder from the removal of unbonded compressive prestressing of the H-type steel showed a capacity improvement of about 60% (7.7 mm) recovery of the residual deformation (18.7 mm) that occurred from load increase. By using prestressed H-type steel as compression reinforcements in the upper part of cross section, repair and rehabilitation of PSC girders are relatively easy, and the cost of maintenance is expected to decrease.