• Title/Summary/Keyword: Box cathode sputtering (BCS)

Search Result 6, Processing Time 0.018 seconds

Box Cathode Sputtering Technologies for Organic-based Optoelectronics (유기물 광전소자 제작을 위한 박스 캐소드 스퍼터 기술)

  • Kim, Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.373-378
    • /
    • 2006
  • We report on plasma damage free-sputtering technologies for organic light emitting diodes (OLEDs), organic thin film transistor (OTFT) and flexible displays by using a box cathode sputtering (BCS) method. Specially designed BCS system has two facing targets generating high magnetic fields ideally entering and leaving the targets, perpendicularly. This target geometry allows the formation of high-density plasma between targets and enables us to realize plasma damage free sputtering on organic layer without protection layer against plasma. The OLED with Al cathode prepared by BCS shows electrical and optical characteristics comparable to OLED with thermally evaporated Mg-Ag cathode. It was found that OLED with Al cathode layer prepared by BCS has much lower leakage current density ($1{\times}10^{-5}\;mA/cm^2$ at -6 V) than that $(1{\times}10^{-2}{\sim}-10^0\;mA/cm^2)$ of OLED prepared by conventional DC sputtering system. This indicates that BCS technique is a promising electrode deposition method for substituting conventional thermal evaporation and DC/RF sputtering in fabrication process of organic based optoelectronics.

Box Cathode Sputtering Technologies for Organic Optoelectronics (유기물 광전소자 제작을 위한 박스 캐소드 스퍼터 기술)

  • Kim, Han-Ki;Lee, Kyu-Sung;Kim, Kwang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.53-54
    • /
    • 2005
  • We report on plasma damage free-sputtering technologies for organic light emitting diodes (OLEDs), organic thin rim transistor (OTFT) and flexible displays by using a box cathode sputtering (BCS) method. Specially designed BCS system has two facing targets generating high magnetic fields ideally entering and leaving the targets, perpendicularly. This target geometry allows the formation of high-density plasma between targets and enables us to realize plasma damage free sputtering on organic layer without protection layer against plasma. The OLED with top cathode prepared by BCS shows electrical and optical characteristics comparable to OLED with thermally evaporated Mg-Ag cathode. It was found that TOLED with ITO or IZO top cathode layer prepared by BCS has much lower leakage current density ($1\times10^{-5}$ mA/cm2 at -6V) than that ($1\times10^{-1}\sim10^{\circ}mA/cm^2$)of OLED prepared by conventional DC sputtering system. This indicates that BCS technique is a promising electrode deposition method for substituting conventional thermal evaporation and dc/rf sputtering in fabrication process of organic based optoelectronics.

  • PDF

Characteristics of Amorphous IZO Anode Films for Polymer OLEDs Grown by Box Cathode Sputtering (박스 캐소드 스퍼터로 성장시킨 고분자 유기발광소자용 비정질 IZO 애노드 박막의 특성)

  • Moon Jong-Min;Bae Jung-Hyeok;Jung Soon-Wook;Kim Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.552-557
    • /
    • 2006
  • Electrical, optical, surface, and structural properties of amorphous indium-zinc-oxide (a-IZO) grown by box cathode sputtering (BCS) were compared with crystalline indium-tin-oxide (c-ITO) anode films grown by conventional DC sputtering (DCS). Although x-ray diffraction plot of BCS-grown IZO film shows amorphous structure, the optical and electrical properties of a-IZO is comparable to those of c-ITO film. In particular, BCS-grown IZO films shows very smooth surface without defects such as pin hole and cracks because most of the energy of the sputtered atoms was confined in high density plasma region in box cathode gun. Furthermore polymer organic light emitting diodes (POLED) with the a-IZO anode film shows better electrical properties than that of POLED with the c-ITO anode film due to high work function and smooth surface of a-IZO. This suggested that BCS-grown a-IZO film is promising anode materials substituting conventional c-ITO anode in OLED and flexible displays.

Electrical, Optical and Structural Properties of Indium Zinc Oxide Top Cathode Grown by Box Cathode Sputtering for Top-emitting OLEDs (박스 캐소드 스퍼터로 성장시킨 전면 발광 OLED용 상부 InZnO 캐소드 박막의 전기적, 광학적, 구조적 특성 연구)

  • Bae Jung-Hyeok;Moon Jong-Min;Kim Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.442-449
    • /
    • 2006
  • Electrical, optical, and structural properties of indium zinc oxide (IZO) films grown by a box cathode sputtering (BCS) were investigated as a function of oxygen flow ratio. A sheet resistance of $42.6{\Omega}/{\Box}$, average transmittance above 88% in visible range, and root mean spare roughness of $2.7{\AA}$ were obtained even in the IZO layers grown at room temperature. In addition, it is shown that electrical characteristics of the top-emitting organic light emitting diodes (TOLEDs) with the BCS grown-IZO top cathode layer is better than that of TOLEDs with DC sputter grown IZO top cathode, due to absence of plasma damage effect. Furthermore the effects of oxygen flow ratio in IZO films are investigated, based on x-ray photoelectron spectroscopy (XPS), ultra violet/visible (UV/VIS) spectro-meter, scanning electron microscopy (SEM), and atomic force microscopy (AFM) analysis results.

Rapid thermal annealing effect of IZO transparent conducting oxide films grown by a box cathode sputtering (박스캐소드 스퍼터로 성장시킨 IZO 투명 전도막의 급속 열처리 효과)

  • Bae, Jung-Hyeok;Moon, Jong-Min;Jeong, Soon-Wook;Kim, Han-Ki;Yi, Min-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.473-474
    • /
    • 2006
  • We report on the rapid thermal annealing effect on the electrical, optical, and structural properties of IZO transparent conducting oxide films grown by box cathode sputtering (BCS). To investigate structural properties of rapid thermal annealed IZO films in $N_2$ atmosphere as a function of annealing temperature, syncrotron x-ray scattering experiment was carried out. It was shown that the amorphous structure of the IZO films was maintained until $400^{\circ}C$ because ZnO and $In_2O_3$ are immiscible and must undergo phase separation to allow crystallization. In addition, the IZO films grown at different Ar/$O_2$ ratio of 30/1.5 and 30/0 showed different preferred (222) and (440) orientation, respectively, with increase of rapid thermal annealing temperature. The electrical properties of the OLED with rapid thermal annealed IZO anode was degraded as rapid thermal annealing temperature of IZO increased. This indicates the amorphous IZO anode is more beneficial to make high-quality OLEDs.

  • PDF

Characteristics of Fluorescent Organic Light Emitting Diodes using Amorphous IZO Anode Film (비정질 IZO 애노드를 이용한 형광 유기발광소자의 특성)

  • Moon, Jong-Min;Bae, Jung-Hyeok;Jeong, Soon-Wook;Kang, Jae-Wook;Kim, Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1044-1049
    • /
    • 2006
  • We reported on characteristics of the fluorescent OLED fabricated on commercial ITO/glass and BCS grown IZO/glass substrate, respectively. The amorphous IZO anode film grown by box cathode sputtering(BCS) exhibited similar electrical and optical characteristics to commercial ITO anode even though it was deposited at room temperature. In addition, the amorphous IZO anode showed higher workfunction (5.2 eV) than that of the commercial ITO anode (5.0 eV) after ozone treatment for 10 min. Furthermore, fluorescent OLED fabricated on amorphous IZO anode film showed improved current-voltage-luminance characteristics, external quantum efficiency and power efficiency en contrast with fluorescent OLED fabricated on commercial ITO anode film. It was thought that smooth surface and high workfunction of amorphous IZO anode lead to more efficient hole injection by reduction of interface barrier height between anode and organic layers.