• Title/Summary/Keyword: Bow

Search Result 705, Processing Time 0.022 seconds

Direct Numerical and Large Eddy Simulations of Transitional Flows around Turbulence Stimulators at Very Low Speeds (초저속 영역에서 난류 촉진기 주위 천이 유동의 직접 수치 및 대형 와 모사)

  • Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.265-273
    • /
    • 2018
  • Direct numerical and large eddy simulations of transitional flows around studs installed on flat plate and bulbous bow have been performed to investigate an effectiveness of turbulence stimulators on laminar-to-turbulence transition at a very low speed. The flow velocity was determined to be 0.366m/s corresponding to 4 knots of full-scale ship speed when the objective ship was Kriso container ship. The spatial evolution of skin friction coefficient disclosed that a fully development of turbulence was observed behind the second stud installed on flat plate while a rapid transition from laminar to turbulence gave rise to the fully development of turbulence behind the first stud installed on bulbous bow. A comparison of streamwise mean velocity profiles showed that the viscous sublayer and log-layer were in good agreement with previous results although the friction velocity of Smagrosinsky sub-grid scale model was about 10% larger than that of direct numerical simulation. While the turbulence intensities of bulbous bow was similar to those of flat plate in inner region, larger intensities of turbulence were observed in outer region of bulbous bow than those of flat plate.

A FINITE ELEMENT AND STRAIN GAUGE ANALYSIS ON THE DISPLACEMENT OF CRANIOFACIAL COMPLEX WITH CERVICAL HEADGEAR (경부고정(頸部固定) headgear 사용시(使用時) 안면두개골(顔面頭蓋骨)의 변위(變位)에 관(關)한 장력계측법(張力計測法) 및 유한요소법적(有限要素法的) 연구(硏究))

  • Kim, Hyun-Soon;Nahm, Dong-Seok
    • The korean journal of orthodontics
    • /
    • v.17 no.2
    • /
    • pp.185-200
    • /
    • 1987
  • This paper was undertaken to observe the displacement of craniofacial complex with cervical headgear and to compare narrowing or widening effect of palate by use of contraction or expansion face-bow, respectively. The 3-dimensional finite element method(FEM) was used for a mathematical model composed of 597 nodes and 790 elements and an electrical resistance strain gauge investigation was performed to validate the finite element model. The outer bow of cervical headgear was adjusted to be placed below the occlusal plane by $25^{\circ}$ and met the midsagittal plane by $40^{\circ}$, and was loaded 1kg on each right and left hook toward posterior direction. The results were as follows 1. Generally, the maxillary teeth and facial bone were displaced in posterior, medial and downward direction. 2. It was the maxillary 2nd bicuspid that moved bodily. 3. The craniofacial complex rotated in a clockwise direction around the rotating axis which lay from the most posterior and lowest point connecting nasal crest of maxillary bone and vomer, progressively toward a more posterior, lateral and upward direction, anterior and upper area of pterygomaxillary fissure, base of medial pterygoid plate and laterally to the contact area of zygomatic arch with squamous part of temporal bone. 4. No contraction effect was observed by contraction face-bow when compared to the standard face-bow. 5. In case of expansion face-bow, the areas of maxillary 2nd bicuspid, molars and palate were expanded remarkably.

  • PDF

Development of Printed Bow-tie Antenna with 3 ~ 5 GHz Broadband Characteristics for Testing the Electromagnetic Immunity of Automotive Electrical Components in the 5G Frequency Band (5G 주파수 대역의 자동차 전장품 전자기파 내성 평가를 위한 3 ~ 5 GHz 광대역 특성의 인쇄형 bow-tie 안테나 개발)

  • Ko, Ho-jin;Choi, Beom-jin;Park, Ki-hun;Woo, Jong-myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.3
    • /
    • pp.137-147
    • /
    • 2020
  • This paper proposes printed bow-tie antennas with 3 ~ 5 GHz broadband characteristics were proposed for testing the electromagnetic immunity of automotive electrical components in the 5G frequency band. The antenna get -10 dB bandwidth in the 2.75 ~ 6 GHz frequency band and the broadside radiation pattern with S11 characteristic of -16.2 dB at resonant frequency. In testing electromagnetic immunity in the 5G mobile communication frequency band, the VSWR characteristic remained below 2.1, forming a level of 1 W as proposed by international standards. As a result, it is confirmed that the proposed antenna can be applied to antenna testing for electromagnetic immunity verification in the 5G mobile communication frequency band.

Development of Structural Analysis System of Bow Flare Structure(3) - Dynamic Structural Analysis - (선수 구조부 구조해석 시스템 개발(3) - 동적 구조해석 -)

  • S.G. Lee;C.K. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.99-110
    • /
    • 2000
  • The damages due to wave impact loads are largely affected by impact pressure impulse and impact load area. The objective of this study is, as the third step, to perform dynamic structural analysis of bow flare structure of 300,000 DWT VLCC using LS/DYNA3D code, and to verify its dynamic structural behaviors. The impact load areas of stiffener space $1.5s{\times}1.5s$ and $2.5s{\times}2.5s$ are applied to bow flare structure part with relatively flexible stiffeners, and with stiff members such as stringers, webs etc., respectively, under the wave impact load with peak height 6.5MPa, tail 1.0MPa, and duration time 5.0msec. Through the dynamic structural analysis in this study, it might be thought that the structural strength of bow flare structure is generally sufficient for these wave impact load and areas, except that large damages were found at bow flare structure area with flexible wide span stiffeners.

  • PDF

THE COMPARATIVE STUDY FOR OCCLUSAL PLANE BETWEEN ARTICULATED CAST MODEL AND CEPHALOGRAM IN ORTHOGANTIHIC SURGERY PATIENTS (악교정수술 환자에서 교합기 석고 모형과 측면두부방사선사진의 교합평면에 관한 비교 연구)

  • Seo, Kyung-Suk;Park, Mi-Hwa;Lee, Ju-Hyun;Kim, Chul-Hwan;Chae, Jong-Moon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.4
    • /
    • pp.239-244
    • /
    • 2003
  • The common errors in preoperative treatment plan for the orthognathic surgery can be occurred during cast impression, cast mounting procedure with face-bow transfer, surgical stent fabrication, and so on. One of the most common errors exists during mounting process of the model on the articulator. Accurate mounting of dental casts to articulator should be achieved by transferring the 3-dimensional spatial relationship of the maxillary arch to an articulator. A face-bow is used for transfer this relationship to articulator, usually by relating the face-bow to a plane of reference of maxillary cast. The purpose of this study is evaluation of the accuracy of face-bow transferring of maxillary model to the articulator. The maxillary casts of thirty patients for orthognathic surgery were mounted on articulator with an face-bow instrument. The relationship of occlusal plane angle to Frankfort horizontal plane relations were compared the cephalogram with the cast-mounted articulator. As a result of this study, the significant difference between the maxillary occlusal planes angle in the cephalogram and articulator were found. The results were followed, 1. The mean occlusal plane angle in cast-mounted articulator was $13.5^{\circ}\;(SD{\pm}5.4)$. 2. The mean occlusal plane angle in cephalogram was $10.4^{\circ}\;(SD{\pm}4.3)$. 3. The mean difference of occlusal plane angle between cast-mounted articulator and cephalogram was $3.3^{\circ}\;(SD{\pm}4.6)$. According to the result, we should suggest that the occlusal plane angle to Frankfort plane in cast-mounted articulator is more steeper than that of cephalogram. And then, maxillofacial surgeon should try to get a more predictable result by suggesting the proper correction method and mounting the cast accurately.

Bow Structure Design of the FPSO installed in the North Sea under the Flare Slamming Load (북해설치 FPSO의 플레어 슬래밍 하중에 대응한 선수 설계)

  • Kim, Ul-Nyeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.5
    • /
    • pp.418-424
    • /
    • 2015
  • This paper is about the bow structure design of the ship-typed and turret moored FPSO which is subjected to the bow-flare slamming load in harsh North Sea environments. Quad 204 FPSO project involves the redevelopment of the existing Schiehallion FPSO which is damaged by impact wave loads. Normally all offshore systems including FPSO are designed to withstand the 100 year storm I.e. the storm that happens once every hundred years at the location where the system is installed. Several incidents have revealed that impact loading is important issue for moored floating production systems. In this paper, the design impact loads are estimated considering the ship owner’s specification, measured data from model tests, requirements of the classification society rules and results of numerical simulation analyses. The impact pressure by numerical analysis is 1.8 times greater than required value by CSR adopted by IACS. Based on the selected design load, plastic design formulae allowing the local material yielding are applied for the initial scantling of the bow structure. To verify the structural integrity, FE analyses are carried out considering the local area subjected to the impact wave loads. Their results such as structural arrangement, design loads and scantlings are shown and discussed. It is found that plastic design formulae in adopting Initial design phase give sufficiently conservative results in terms of structural strength.

Modified Abbé flap for reconstruction of Cupid's bow and vermilion tubercle in secondary cleft lip deformity

  • Lee, Jun Won;Lee, Seong Joo;Suh, In Suck;Lee, Chong Kun
    • Archives of Craniofacial Surgery
    • /
    • v.19 no.1
    • /
    • pp.13-19
    • /
    • 2018
  • Background: $Abb{\acute{e}}$ flap technique is one of the most challenging operations to correct horizontal deficiencies in secondary cleft lip deformity. Since its first introduction, the operative method was dynamically modified from simple variation to complete conceptual change, but conventional $Abb{\acute{e}}$ flap has many drawbacks in esthetic and functional aspect. Our purpose was reconstructing the symmetry of Cupid's bow and central vermilion tubercle with minimal sequalae. Methods: From 2008 to 2016, this technique was applied to 16 secondary cleft lip patients who had total or more than 60% of unilateral deficiency of Cupid's bow and central lip or tubercle pouting deficiency. A quadrangular-shaped flap was transferred from vermilion including skin and white line of central or contralateral lower lip. Pedicle division and insetting were made at 9 (unilateral) or 10 (bilateral) days after transfer. Secondary lip revision was done with open rhinoplasty after wound maturation. Results: Overall satisfaction was high with modified technique. Scar was minimally noticeable on both upper and lower lip especially. Balanced Cupid's bow and symmetric vermilion tubercle were made with relatively small size of flap compared to conventional $Abb{\acute{e}}$ flap. An accompanying benefit was reduced ectropion of lower lip, which made balanced upper and lower lip protrusion with more favorable profile. Conclusion: A new modified $Abb{\acute{e}}$ flap technique showed great satisfaction. It is worth considering in secondary cleft lip patient who has central lip shortage and asymmetry of upper lip vermilion border line. Our technique is one of the substitutes for correction of horizontal and central lip deficiency with asymmetric Cupid's bow.

Effects of the General Coordinative Manipulation Joint Intervention Model in Correcting Distort Leg with Imbalance of the Lower Extremity Joint, Pelvic and Shoulder Girdles, and Lumbar Spine (다리관절, 다리-팔 이음뼈, 허리뼈의 불균형을 가진 휜다리에 대한 전신조정술 관절중재모형의 교정효과)

  • Moon, Sangeun
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.3
    • /
    • pp.1-10
    • /
    • 2020
  • Purpose : The purpose of this study is to analyze the corrective effect of the general coordinative manipulation (GCM) joint intervention model on distort leg with imbalance of the lower extremity joints, pelvic and shoulder girdles, and lumbar spine. Methods : The study used a comparative analysis of the size of the distort leg and the imbalance of the lower extremity joints, pelvic and shoulder girdles, and lumbar spine before and after the application of the GCM joint intervention model. A total of 31 subjects from movement center G and the department of physical therapy at university M were selected as research subjects, and they were divided into two groups. The GCM joint intervention model was applied to 18 subjects in the bow knee group and 13 subjects in the knock knee group. The two groups received daily intervention three times a week for four weeks. The corrective effect of the GCM joint intervention model for each type of distort leg was compared and analyzed. Results : The effects of the GCM joint intervention model in correcting bow knee and knock knee with knee deformation and imbalance of the lower extremity joints, pelvic and shoulder girdles, and lumbar spine were significant in most domains (p<.05). The correlation between the bow knee and knock knee groups showed significance in most domains (p<.05). Conclusion : The GCM joint intervention model showed significant corrective effect in the bow knee and knock knee groups in terms of knee deformation, lower extremity joints, pelvic and shoulder girdles, and lumbar spine (p<.05).

Effective Korean sentiment classification method using word2vec and ensemble classifier (Word2vec과 앙상블 분류기를 사용한 효율적 한국어 감성 분류 방안)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.133-140
    • /
    • 2018
  • Accurate sentiment classification is an important research topic in sentiment analysis. This study suggests an efficient classification method of Korean sentiment using word2vec and ensemble methods which have been recently studied variously. For the 200,000 Korean movie review texts, we generate a POS-based BOW feature and a feature using word2vec, and integrated features of two feature representation. We used a single classifier of Logistic Regression, Decision Tree, Naive Bayes, and Support Vector Machine and an ensemble classifier of Adaptive Boost, Bagging, Gradient Boosting, and Random Forest for sentiment classification. As a result of this study, the integrated feature representation composed of BOW feature including adjective and adverb and word2vec feature showed the highest sentiment classification accuracy. Empirical results show that SVM, a single classifier, has the highest performance but ensemble classifiers show similar or slightly lower performance than the single classifier.

Computation of Design Pressure against the Bow Bottom Slamming Impact (선수부 선저 슬래밍 충격에 대비한 설계압력의 산출)

  • Kim, Yong Jig;Lee, Seung-Chul;Ha, Youngrok;Hong, Sa Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.187-195
    • /
    • 2018
  • Ship's bottom slamming has been studied by many researchers for a very long time. But still some ships suffer structure damages caused by the bottom slamming impacts. This paper presents a practical computation method of the design impact pressure due to ship's bow bottom slamming. Large heave and pitch motions of a rigid hull ship are simulated by the nonlinear strip method in time domain and the relative colliding velocity between the bow bottom and the water surface is calculated using the simulated ship motions. The bottom slamming impact pressure is calculated as a product of the relative colliding velocity squared and the bottom slamming pressure coefficient that is obtained by modification of the SNAME pressure coefficients based on Ochi's slamming experiments. Not only the bottom slamming pressures but also the required bottom plate thicknesses are calculated and compared with those of the classification society rules. The comparisons show good agreements and it is confirmed that the present method is practically very useful for the bottom structure design against ship's bow bottom slamming impacts.