• Title/Summary/Keyword: Bovine single nucleotide polymorphism

Search Result 54, Processing Time 0.019 seconds

Genomic Heritability of Bovine Growth Using a Mixed Model

  • Ryu, Jihye;Lee, Chaeyoung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1521-1525
    • /
    • 2014
  • This study investigated heritability for bovine growth estimated with genomewide single nucleotide polymorphism (SNP) information obtained from a DNA microarray chip. Three hundred sixty seven Korean cattle were genotyped with the Illumina BovineSNP50 BeadChip, and 39,112 SNPs of 364 animals filtered by quality assurance were analyzed to estimate heritability of body weights at 6, 9, 12, 15, 18, 21, and 24 months of age. Restricted maximum likelihood estimate of heritability was obtained using covariance structure of genomic relationships among animals in a mixed model framework. Heritability estimates ranged from 0.58 to 0.76 for body weights at different ages. The heritability estimates using genomic information in this study were larger than those which had been estimated previously using pedigree information. The results revealed a trend that the heritability for body weight increased at a younger age (6 months). This suggests an early genetic evaluation for bovine growth using genomic information to increase genetic merits of animals.

A Genome Wide Association Study on Age at First Calving Using High Density Single Nucleotide Polymorphism Chips in Hanwoo (Bos taurus coreanae)

  • Hyeong, K.E.;Iqbal, A.;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1406-1410
    • /
    • 2014
  • Age at first calving is an important trait for achieving earlier reproductive performance. To detect quantitative trait loci (QTL) for reproductive traits, a genome wide association study was conducted on the 96 Hanwoo cows that were born between 2008 and 2010 from 13 sires in a local farm (Juk-Am Hanwoo farm, Suncheon, Korea) and genotyped with the Illumina 50K bovine single nucleotide polymorphism (SNP) chips. Phenotypes were regressed on additive and dominance effects for each SNP using a simple linear regression model after the effects of birth-year-month and polygenes were considered. A forward regression procedure was applied to determine the best set of SNPs for age at first calving. A total of 15 QTL were detected at the comparison-wise 0.001 level. Two QTL with strong statistical evidence were found at 128.9 Mb and 111.1 Mb on bovine chromosomes (BTA) 2 and 7, respectively, each of which accounted for 22% of the phenotypic variance. Also, five significant SNPs were detected on BTAs 10, 16, 20, 26, and 29. Multiple QTL were found on BTAs 1, 2, 7, and 14. The significant QTLs may be applied via marker assisted selection to increase rate of genetic gain for the trait, after validation tests in other Hanwoo cow populations.

Single-nucleotide polymorphism-based epidemiological analysis of Korean Mycobacterium bovis isolates

  • Kim, Tae-Woon;Jang, Yun-Ho;Jeong, Min Kyu;Seo, Yoonjeong;Park, Chan Ho;Kang, Sinseok;Lee, Young Ju;Choi, Jeong-Soo;Yoon, Soon-Seek;Kim, Jae Myung
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.24.1-24.16
    • /
    • 2021
  • Background: Bovine tuberculosis (TB) is caused by Mycobacterium bovis, a well-known cause of zoonotic tuberculosis in cattle and deer, and has been investigated in many physiological and molecular studies. However, detailed genome-level studies of M. bovis have not been performed in Korea. Objectives: To survey whole genome-wide single-nucleotide polymorphism (SNP) variants in Korean M. bovis field isolates and to define M. bovis groups in Korea by comparing SNP typing with spoligotyping and variable number tandem repeat typing. Methods: A total of 46 M. bovis field isolates, isolated from laryngopharyngeal lymph nodes and lungs of Korean cattle, wild boar, and Korean water deer, were used to identify SNPs by performing whole-genome sequencing. SNP sites were confirmed via polymerase chain reaction using 87 primer pairs. Results: We identified 34 SNP sites with different frequencies across M. bovis isolates, and performed SNP typing and epidemiological analysis, which divided the 46 field isolates into 16 subtypes. Conclusions: Through SNP analysis, detailed differences in samples with identical spoligotypes could be detected. SNP analysis is, therefore, a useful epidemiological tracing tool that could enable better management of bovine TB, thus preventing further outbreaks and reducing the impact of this disease.

A simple and rapid method for detection of single nucleotide variants using tailed primer and HRM analysis

  • Hyeonguk Baek;Inchul, Choi
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.209-214
    • /
    • 2023
  • Background: Single nucleotide polymorphisms (SNPs) are widely used genetic markers with applications in human disease diagnostics, animal breeding, and evolutionary studies, but existing genotyping methods can be labor-intensive and costly. The aim of this study is to develop a simple and rapid method for identification of a single nucleotide change. Methods: A modified Polymerase Chain Reaction Amplification of Multiple Specific Alleles (PAMSA) and high resolution melt (HRM) analysis was performed to discriminate a bovine polymorphism in the NCAPG gene (rs109570900, 1326T > G). Results: The inclusion of tails in the primers enabled allele discrimination based on PCR product lengths, detected through agarose gel electrophoresis, successfully determining various genotypes, albeit with some time and labor intensity due to the use of relatively costly high-resolution agarose gels. Additionally, high-resolution melt (HRM) analysis with tailed primers effectively distinguished the GG genotype from the TT genotype in bovine muscle cell lines, offering a reliable way to distinguish SNP polymorphisms without the need for time-consuming AS-PCR. Conclusions: Our experiments demonstrated the importance of incorporating unique mismatched bases in the allele-specific primers to prevent cross-amplification by fragmented primers. This efficient and cost-effective method, as presented here, enables genotyping laboratories to analyze SNPs using standard real-time PCR.

The characteristics of bovine satellite cells with highly scored genomic estimated breeding value

  • Jae Ho Han;Ji Suk Yu;Do Hyun Kim;Hyun Woo Choi
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.177-187
    • /
    • 2023
  • Background: The grading of Hanwoo (Korean native cattle) is based on four economic traits, and efforts have been continuously made to improve the genetic traits associated with these traits. There is a technology to predict the expected grade based on the 4 economic genetic SNP characteristics of Korean cattle calves using single nucleotide polymorphism (SNP) technology. Selection of highly proliferative, self-renewing, and differentiating satellite cells from cattle is a key technology in the cultured meat industry. Methods: We selected the Hanwoo with high and low-scored of genomic estimated breeding value (GEBV) by using the Hanwoo 50K SNP bead chip. We then isolated the bovine satellite cells from the chuck mass. We then conducted comparative analyses of cell proliferation, immunocytochemistry, qRT-PCR at short- and long-term culture. We also analyzed the differentiation capability at short term culture. Results: Our result showed that the proliferation was significantly high at High scored GEBV (Hs-GEBV) compared to Low scored GEBV (Ls-GEBV) at short- and long-term culture. The expression levels of Pax3 were significantly higher in Hs-GEBV bovine satellite cells at long-term culture. However, there were no significant differences in the expression levels of Pax7 between Hs- and Ls-GEBV bovine satellite cells at short- and long- term culture. The expression levels of MyoG and MyHC were significantly high at Ls-GEBV bovine satellite cells. Conclusions: Our results indicated that selection of bovine satellite cells by Hanwoo 50K SNP bead chip could be effective selection methods for massive producing of satellite cells.

Genomic Analyses of Toll-like Receptor 4 and 7 Exons of Bos indicus from Temperate Sub-himalayan Region of India

  • Malik, Y.P.S.;Chakravarti, S.;Sharma, K.;Vaid, N.;Rajak, K.K.;Balamurugan, V.;Biswas, S.K.;Mondal, B.;Kataria, R.S.;Singh, R.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.7
    • /
    • pp.1019-1025
    • /
    • 2011
  • Toll-like receptors (TLRs) play an important role in the recognition of invading pathogens and the modulation of innate immune responses in mammals. The TLR4 and TLR7 are well known to recognize the bacterial lipopolysaccharide (LPS) and single stranded (ssRNA) ligands, respectively and play important role in host defense against Gram-negative bacteria and ssRNA viruses. In the present study, coding exon fragments of these two TLRs were identified, cloned, sequenced and analyzed in terms of insertion-deletion polymorphism, within bovine TLRs 4 and 7, thereby facilitating future TLR signaling and association studies relevant to bovine innate immunity. Comparative sequence analysis of TLR 4 exons revealed that this gene is more variable, particularly the coding frame (E3P1), while other parts showed percent identity of 95.7% to 100% at nucleotide and amino acid level, respectivley with other Bos indicus and Bos taurus breeds from different parts of the world. In comparison to TLR4, sequence analysis of TLR7 showed more conservation among different B. indicus and B. taurus breeds, except single point mutation at 324 nucleotide position (AAA to AAM) altering a single amino acid at 108 position (K to X). Percent identity of TLR7 sequences (all 3 exons) was between 99.2% to 100% at nucleotide and amino acid level, when compared with available sequence database of B. indicus and B. taurus. Simple Modular Architecture Research Tool (SMART) analysis showed variations in the exon fragments located in the Leucine Rich Repeat (LRR) region, which is responsible for binding with the microbial associated molecular patterns and further, downstream signaling to initiate anti-microbial response. Considering importance of TLR polymorphism in terms of innate immunity, further research is warranted.

BcSNPdb: Bovine Coding Region Single Nucleotide Polymorphisms Located Proximal to Quantitative Trait Loci

  • Moon, Sun-Jin;Shin, Hyoung-Doo;Cheong, Hyun-Sub;Cho, Hye-Young;NamGoong, Sohg;Kim, Eun-Mi;Han, Chang-Su;Sung, Sam-Sun;Kim, Hee-Bal
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.95-99
    • /
    • 2007
  • Bovine coding region single nucleotide polymorphisms located proximal to quantitative trait loci were identified to facilitate bovine QTL fine mapping research. A total of 692,763 bovine SNPs was extracted from 39,432 UniGene clusters, and 53,446 candidate SNPs were found to be a depth >3. In order to validate the in silico SNPs experimentally, 186 animals representing 14 breeds and 100 mixed breeds were analyzed. Genotyping of 40 randomly selected candidate SNPs revealed that 43% of these SNPs ranged in frequency from 0.009 to 0.498. To identify non-synonymous SNPs and to correct for possible frameshift errors in the ESTs at the predicted SNP positions, we designed a program that determines coding regions by protein-sequence referencing, and identified 17,735 nsSNPs. The SNPs and bovine quantitative traits loci informations were integrated into a bovine SNP data: BcSNPdb (http://snugenome.snu.ac.kr/BtcSNP/). Currently there are 43 different kinds of quantitative traits available. Thus, these SNPs would serve as valuable resources for exploiting genomic variation that influence economically and agriculturally important traits in cows.

Bovine Genome-wide Association Study for Genetic Elements to Resist the Infection of Foot-and-mouth Disease in the Field

  • Lee, Bo-Young;Lee, Kwang-Nyeong;Lee, Taeheon;Park, Jong-Hyeon;Kim, Su-Mi;Lee, Hyang-Sim;Chung, Dong-Su;Shim, Hang-Sub;Lee, Hak-Kyo;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.166-170
    • /
    • 2015
  • Foot-and-mouth disease (FMD) is a highly contagious disease affecting cloven-hoofed animals and causes severe economic loss and devastating effect on international trade of animal or animal products. Since FMD outbreaks have recently occurred in some Asian countries, it is important to understand the relationship between diverse immunogenomic structures of host animals and the immunity to foot-and-mouth disease virus (FMDV). We performed genome wide association study based on high-density bovine single nucleotide polymorphism (SNP) chip for identifying FMD resistant loci in Holstein cattle. Among 624532 SNP after quality control, we found that 11 SNPs on 3 chromosomes (chr17, 22, and 15) were significantly associated with the trait at the p.adjust <0.05 after PERMORY test. Most significantly associated SNPs were located on chromosome 17, around the genes Myosin XVIIIB and Seizure related 6 homolog (mouse)-like, which were associated with lung cancer. Based on the known function of the genes nearby the significant SNPs, the FMD resistant animals might have ability to improve their innate immune response to FMDV infection.

Genome-wide Single Nucleotide Polymorphism Analyses Reveal Genetic Diversity and Structure of Wild and Domestic Cattle in Bangladesh

  • Uzzaman, Md. Rasel;Edea, Zewdu;Bhuiyan, Md. Shamsul Alam;Walker, Jeremy;Bhuiyan, A.K.F.H.;Kim, Kwan-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1381-1386
    • /
    • 2014
  • In spite of variation in coat color, size, and production traits among indigenous Bangladeshi cattle populations, genetic differences among most of the populations have not been investigated or exploited. In this study, we used a high-density bovine single nucleotide polymorphism (SNP) 80K Bead Chip derived from Bos indicus breeds to assess genetic diversity and population structure of 2 Bangladeshi zebu cattle populations (red Chittagong, n = 28 and non-descript deshi, n = 28) and a semi-domesticated population (gayal, n = 17). Overall, 95% and 58% of the total SNPs (69,804) showed polymorphisms in the zebu and gayal populations, respectively. Similarly, the average minor allele frequency value was as high 0.29 in zebu and as low as 0.09 in gayal. The mean expected heterozygosity varied from $0.42{\pm}0.14$ in zebu to $0.148{\pm}0.14$ in gayal with significant heterozygosity deficiency of 0.06 ($F_{IS}$) in the latter. Coancestry estimations revealed that the two zebu populations are weakly differentiated, with over 99% of the total genetic variation retained within populations and less than 1% accounted for between populations. Conversely, strong genetic differentiation ($F_{ST}=0.33$) was observed between zebu and gayal populations. Results of population structure and principal component analyses suggest that gayal is distinct from Bos indicus and that the two zebu populations were weakly structured. This study provides basic information about the genetic diversity and structure of Bangladeshi cattle and the semi-domesticated gayal population that can be used for future appraisal of breed utilization and management strategies.

Molecular Cloning and Characterization of Bovine HMGA1 Gene

  • Yu, S.L.;Chung, H.J.;Sang, B.C.;Bhuiyan, M.S.A.;Yoon, D.;Kim, K.S.;Jeon, J.T.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1662-1669
    • /
    • 2007
  • The high mobility group AT-hook1 (HMGA1) proteins are known to be related to the regulation of gene transcription, replication and promotion of metastatic progression in cancer cells. The loss of expression by disrupting the HMGA1 gene affects insulin signaling and causes diabetes in the mouse. Previously identified single nucleotide polymorphism (SNP) of HMGA1 was significantly associated with fat deposition traits in the pig. In this study, we identified 3,935 bp nucleotide sequences from exon 5 to exon 8 of the bovine HMGA1 gene and its mRNA expression was observed by quantitative real-time PCR. Six single nucleotide polymorphisms in the bovine HMGA1 gene were detected and the allele frequencies of these SNPs were investigated using the PCR-RFLP method in nine cattle breeds including Limousin, Simmental, Brown Swiss, Hereford, Angus, Charolais, Hanwoo, Brahman and Red Chittagong cattle. The map location showed that the bovine HMGA1 gene was also closely located with a previously identified meat quality QTL region indicating this gene is the most likely positional candidate for meat quality traits in cattle.