• Title/Summary/Keyword: Bovine Oct-4

Search Result 25, Processing Time 0.028 seconds

DNA Methylation Change of Oct-4 Gene Promoter Region during Bovine Preimplantation Early Embryos (소 착상 전 초기수정란에서 Oct-4 유전자 Promoter 영역의 DNA 메틸화 변화)

  • Ko, Yeoung-Gyu;Kim, Jong-Mu;Kim, Dong-Hoon;Cha, Byung-Hyun;Kim, Seong-Soo;Yang, Byoung-Chul;Im, Gi-Sun;Kim, Myong-Jik;Min, Kwan-Sik;Seong, Hwan-Hoo
    • Reproductive and Developmental Biology
    • /
    • v.32 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • DNA methylation is involved in tissue-specific gene control and essential for normal embryo development Octamer-binding transcription factor 4 (Oct-4) is one of the most important transcription factors for early differentiation. This study was performed whether the bovine Oct-4 is tissue specific or developmental dependent epigenetic mark, we investigated transcripts and the methylation status of CpGs of 5'-promoter region of Oct-4 in bovine preimplantation embryos. Oct-4 transcripts were highly detected in morula and blastocyst, while they were present low levels in sperm and 2- to 8-cell stage embryos. These results suggest that de novo expression of Oct-4 initiates at morula stage of embryogenesis. Here we determined that there is a tissue-dependent differentially methylated region (T-DMR) in the 5'-promoter region of Oct-4. The methylation status of the Oct-4 T-DMR was distinctively different in the oocyte from that in the sperm and adult somatic tissues and changed from zygote to blastocyst stage, suggesting that active methylation and demethylation occur during preimplantation development. Based on these results, the 5'-promoter region of Oct-4 gene is target for DNA methylation and the methylation status changes variously during embryonic development in bovine.

Expression and DNA Methylation Change of Oct-4 in Cloned Bovine Blastocysts (체세포복제 소 배반포의 Oct-4 발현과 DNA 메틸화 변화)

  • Cha, Byung-Hyun;Choi, Jung-Sang;Hwang, Seong-Soo;Chung, Hak-Jae;Im, Gi-Sun;Yang, Byong-Chul;Kim, Myong-Jik;Cho, Jae-Hyeon;Seong, Hwan-Hoo;Ko, Yeoung-Gyu
    • Journal of Embryo Transfer
    • /
    • v.23 no.3
    • /
    • pp.133-139
    • /
    • 2008
  • DNA methylation is one of the reasons for poor survival of clone animals. The OCT-4 gene is essential for maintaining pluripotency of embryonic stem (ES) cells and early embryos. We previously reported that the 5'-promoter region of Oct-4 gene was a target of DNA methylation and the methylation status was changed variously during embryonic development in bovine. The study conducted to examine the expression and methylation pattern of tissue-dependent differentially methylated region (T-DMR) of Oct-4 gene in bovine somatic cell nuclear transfer (SCNT) and in vitro fertilization (IVF) blastocysts. The Oct-4 gene expression was evaluated by RT-PCR and fluorescence immunocytochemistry. The methylation pattern of T-DMR was analyzed using restriction mapping and bisulfite sequencing methods. The Oct-4 transcripts were highly expressed in IVF, while they were not expressed in SCNT. The Oct-4 protein was not detected or expressed at very low level in SCNT, the intensity of Oct-4 protein, however, was strong in IVF. On the other hand, the T-DMR of Oct-4 gene was hypermethylated in SCNT compared to that of IVF. These results suggested that expression and the failure of demethylation of Oct-4 gene was closely associated with incomplete development of SCNT embryos.

Correlation of Oct4 and FGF4 Gene Expression on Peri-implantation Bovine Embryos Reconstructed with Somatic Cell

  • K. S. Chung;Yoon, B. S;S. J. Song;Park, Y. J.;S. B. Hong;Lee, H. T.
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.4
    • /
    • pp.329-338
    • /
    • 2002
  • This study was carried out to investigate the developmental rates of embryo reconstructed with different cell type and to estimate correlation of transcriptional level of octamer-binding transcription factor 4 (Oct4) and fibroblast growth factor 4 (FCF4) gene on peri-implantation stage embryos. Donor cells were transferred into perivitelline space of enucleated oocytes. The karyoplast-cytoplast couplets were accom- plished by cell to cell fusion and activated with ionomycin and 6-dimethylaminopurine. Reconstructed embryos were co-cultured with bovine oviduct epithelial cells in CR 1 aa medium. There is no difference in blastocyst formation rate following nuclear transfer UT) with fetal fibroblast cell (16/50; 32.0%), cumulus cell (16/49; 32.6%) and ear cell (17/52; 32.6%). The expression level of Oct4 and FCF4 in peri-implantation bovine embryo derived from in vitro fertilization (IVF) and NT were determined by reverse-transcription polymerase chain reaction (RT-PCR) technique. In peri-implantation of IVF result in a transient increased of FCF4 paralleled by an increased expression of Oct4. However, Oct4 gene was highly expressed in hatching blastocysts derived from NT compared to IVF. Also, FGF4 expression level in hatching blastocysts and outgrowth stage derived from NT was lower than that of IVF. In conclusion, it is suggested that the different transcription patterns observed in nuclear transfer embryos may lead to a lower rate of embryo development, implantation and pregnancy.

Expression of Oct-4 in the Pregnancy of Korean Native Cattle

  • H. J. Chung;Kim, B. K.;Park, J. H.;J. H Woo;Park, M. Y.;H. H. Seong;W. K. Chang
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.51-51
    • /
    • 2003
  • Oct-4 is a maternally expressed octamer-binding protein encoded by the murine Oct-4 gene. It is present in unfertilized oocytes, but also in the inner cell mass and in primordial germ cells. In addition, Oct-4 is the first transcrition factor described that is specific for the blastocysts stage bovine embryos. The spatial and temporal expression patterns were further determined using Immunohistochemistry. With this technique Oct-4 protein expression is detected in the oocyte, in the blastocyst. After pregnancy Oct-4 expression is restricted ovary and placental tissue. Therefore Oct-4 is a transcription factor that is specifically expressed in cells participating in the pregnancy of Korean native cattle. These result suggest that Oct-4 localization and expression may contribute to the defects in the developmental normal seen in Korean native cattle.

  • PDF

TATA box binding protein and ribosomal protein 4 are suitable reference genes for normalization during quantitative polymerase chain reaction study in bovine mesenchymal stem cells

  • Jang, Si-Jung;Jeon, Ryoung-Hoon;Kim, Hwan-Deuk;Hwang, Jong-Chan;Lee, Hyeon-Jeong;Bae, Seul-Gi;Lee, Sung-Lim;Rho, Gyu-Jin;Kim, Seung-Joon;Lee, Won-Jae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.2021-2030
    • /
    • 2020
  • Objective: Quantitative polymerase chain reaction (qPCR) has been extensively used in the field of mesenchymal stem cell (MSC) research to elucidate their characteristics and clinical potential by normalization of target genes against reference genes (RGs), which are believed to be stably expressed irrespective of various experimental conditions. However, the expression of RGs is also variable depending on the experimental conditions, which may lead to false or contradictory conclusions upon normalization. Due to the current lack of information for a clear list of stable RGs in bovine MSCs, we conducted this study to identify suitable RGs in bovine MSCs. Methods: The cycle threshold values of ten traditionally used RGs (18S ribosomal RNA [18S], beta-2-microglobulin [B2M], H2A histone family, member Z [H2A], peptidylprolyl isomerase A [PPIA], ribosomal protein 4 [RPL4], succinate dehydrogenase complex, subunit A [SDHA], beta actin [ACTB], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], TATA box binding protein [TBP], and hypoxanthine phosphoribosyltrasnfrase1 [HPRT1]) in bovine bone marrow-derived MSCs (bBMMSCs) were validated for their stabilities using three types of RG evaluation algorithms (geNorm, Normfinder, and Bestkeeper). The effect of validated RGs was then verified by normalization of lineage-specific genes (fatty acid binding protein 4 [FABP4] and osteonectin [ON]) expressions during differentiations of bBMMSCs or POU class 5 homeobox 1 (OCT4) expression between bBMMSCs and dermal skins. Results: Based on the results obtained for the three most stable RGs from geNorm (TBP, RPL4, and H2A), Normfinder (TBP, RPL4, and SDHA), and Bestkeeper (TBP, RPL4, and SDHA), it was comprehensively determined that TBP and RPL4 were the most stable RGs in bBMMSCs. However, traditional RGs were suggested to be the least stable (18S) or moderately stable (GAPDH and ACTB) in bBMMSCs. Normalization of FABP4 or ON against TBP, RPL4, and 18S presented significant differences during differentiation of bBMMSCs. However, although significantly low expression of OCT4 was detected in dermal skins compared to that in bBMMSCs when TBP and RPL4 were used in normalization, normalization against 18S exhibited no significance. Conclusion: This study proposes that TBP and RPL4 were suitable as stable RGs for qPCR study in bovine MSCs.

Differential Gene Expression in the Bovine Transgenic Nuclear Trasnsfer Embryos (소 형질전환 복제란의 유전자 이상발현 규명)

  • Cho, Jong-Ki;Song, Bong-Seok;Yong, Hwan-Yul;Lee, Doo-Soo;Koo, Deok-Bon;Lee, Kyung-Kwang;Shin, Sang-Tae
    • Journal of Veterinary Clinics
    • /
    • v.24 no.3
    • /
    • pp.295-299
    • /
    • 2007
  • The detrimental effects of gene transfection on embryo development and the molecular mechanism behind the differential expression of genes related to early embryo development were assessed in the production of transgenic cow embryos through somatic cell nuclear transfer (NT). Parthenogenetic, IVF, and transgenic NT embryos derived from ${\alpha}_1$-antitrypsin transfected ear fibroblast cells was produced. To investigate the molecular mechanism behind lower developmental competence of transgenic NT embryos, the differential mRNA expression of three genes ($IFN-{\tau}$, Oct4, Fgf4) in the 3 types of embryo (Parthenogenetic, IVF, transgenic NT) was examined. RNA was extracted from ten blastocysts derived from 3 types of embryos and reverse-transcripted for synthesis of the first cDNA. The quantification of 3 gene transcripts ($IFN-{\tau}$, Oct4, and Fgf4) was carried out in three replicate by quantitative real-time reverse transcriptase PCR. Expression level of $IFN-{\tau}$ mRNA was significantly higher in transgenic NT embryos than parthenogenetic and IVF embryos (P<0.05). However, expression level of Oct4 and Fgf4 of transgenic NT embryos was significantly lower than IVF embryos (P<0.05). Altered levels of these three mRNA transcripts may explain some of the embryonic/fetal/neonatal abnormalities observed in offspring from transgenic NT embryos.

Assessment of Early Dental Caries by Using Optical Coherence Tomography (Optical Coherence Tomography를 이용한 초기 치아우식 검사)

  • Min, Ji-Hyun
    • Journal of dental hygiene science
    • /
    • v.16 no.4
    • /
    • pp.257-262
    • /
    • 2016
  • The purpose of this study was to assess the correlation between integrated mineral loss (volume % mineral${\times}{\mu}m$, ${\Delta}Z_{TMR}$) determined using transverse microradiography (TMR) and integrated reflectivity ($dB{\times}{\mu}m$, ${\Delta}R_{OCT}$) determined using optical coherence tomography (OCT) for detecting early dental caries with lesion depth more than $200{\mu}m$. Sixty tooth specimens were made from sound bovine teeth. They were immersed in a demineralized solution for 20, 30, and 40 days. The ${\Delta}R_{OCT}$ was obtained from the cross-sectional OCT image. The ${\Delta}Z_{TMR}$ was obtained from the TMR image. The correlation between ${\Delta}R_{OCT}$ and ${\Delta}Z_{TMR}$ was examined using Pearson correlation. The Bland-Altman plot was constructed using the ${\Delta}R_{OCT}$ and ${\Delta}Z_{TMR}$ values. A significant correlation between ${\Delta}R_{OCT}$ and ${\Delta}Z_{TMR}$ was confirmed (r=0.491, p=0.003). Moreover, most of the difference between ${\Delta}R_{OCT}$ and ${\Delta}Z_{TMR}$ was included in the error section of the Bland-Altman plot. Therefore, OCT could be used as a substitute for TMR when analyzing mineral loss in early dental caries.

Correlation of Oct-4 and FGF-4 Gene Expression on Peri-Implantation Bovine Embryos Reconstructed with Various Somatic Cells

  • Yoon, Byung-Sun;Song, Sang-Jin;Do, Jeong-Tae;Hong, Seung-Bum;Lee, Hoon-Taek;Chung, Kil-Saeng
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.66-66
    • /
    • 2002
  • The efficiency of animal production using cloning technology is relatively low. It is considered that the nuclear transferred (NT) embryos proceed inappropriate reconstruction with donor-recipient cell, which lead to a abnormal embryo development, and differential expression of mRNA transcript. Especially, the expression of mRNA on peri-implantation stage embryos is very important factor to decide success of implantation and ongoing pregnancy. (omitted)

  • PDF

Methylation Changes at the First Exon of Bovine oct-4 Gene in Embryos Produced Either by In Vitro Fertilization or Somatic Cell Nuclear Transfer

  • Seungeun Yeo;Park, Jung-Sun;Wee, Kap-In;Lee, Hyo-Sang;Koo, Deog-Bon;Lee, Kyung-Kwang;Han, Yong-Mahn;Kang, Yong-Kook
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.62-62
    • /
    • 2002
  • The relationship of Oct-4 to pluripotent cells is suggested by its tightly restricted expression pattern during embryonic development. Just prior to implantation it is limited to pluripotent cells of the inner cell mass (ICM) that will form the embryo proper but is not expressed in the trophectoderm, the structure that will form the extraembryonic tissues. (omitted)

  • PDF

Establishment and Maintenance of Embryonic Stem-like Cell Lines from In Vitro Produced Bovine Blastocysts (체외수정 유래 소 배반포로부터 유사 배아 줄기 세포의 확립 및 유지)

  • Lee, Yu-Yeon;Kim, Sun-Uk;Kim, Ji-Su;Song, Bong-Seok;Cho, Yoon-Jeong;Park, Jung-Sun;Yu, Dae-Yeul;Jin, Dong-Il;Lee, Kyung-Kwang;Koo, Deog-Bon
    • Reproductive and Developmental Biology
    • /
    • v.31 no.3
    • /
    • pp.215-220
    • /
    • 2007
  • This study was conducted to examine the establishment of bovine ES-like cells having pluripotency. The hatched blastocysts derived from culture of in vitro fertilized embryos for 10 to 12 days dissociated mechanically into ICM-and trophectoderm-rich clumps using needle, and cultured onto mitotically-inactivated MEF feeder layer. The primary colonies originated from ICM cells were detached mechanically 7 days after seeding and subsequent subculture was conducted at intervals of every 5 to 7 days. Two ES -like cell lines were established and maintained over 40 passages. Self-renewal of the established lines was confirmed by examining the alkaline phosphatase activity, stem cell-specific marker profiles including SSEA isotopes, Oct-4 and STAT3. Moreover, the established cell lines could produce anchorage-independent embryoid bodies (EBs) with gradual decrease of Oct-4 transcript level in time-dependent manner.