• Title/Summary/Keyword: Boundary-Value Problems

Search Result 368, Processing Time 0.027 seconds

SOLUTION OF THE SYSTEM OF FOURTH ORDER BOUNDARY VALUE PROBLEM USING REPRODUCING KERNEL SPACE

  • Akram, Ghazala;Ur Rehman, Hamood
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.55-63
    • /
    • 2013
  • In this paper, a general technique is proposed for solving a system of fourth-order boundary value problems. The solution is given in the form of series and its approximate solution is obtained by truncating the series. Advantages of the method are that the representation of exact solution is obtained in a new reproducing kernel Hilbert space and accuracy of numerical computation is higher. Numerical results show that the method employed in the paper is valid. Numerical evidence is presented to show the applicability and superiority of the new method.

TWO-LAYER MULTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD FOR 3D-PROBLEM

  • KIM, SANG-BAE
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.5_6
    • /
    • pp.383-395
    • /
    • 2016
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method (SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the Robin condition (mixed interface condition), controlled by a parameter, can optimize SAM's convergence rate. In [8], one formulated the twolayer multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. Two-dimensional implementation was presented in [10]. In this paper, we present an implementation for threedimensional problem.

Analysis of Orthotropic Spherical Shells under Symmetric Load Using Runge-Kutta Method (Runge-Kutta법을 이용한 축대칭 하중을 받는 직교 이방성 구형쉘의 해석)

  • Kim, Woo-Sik;Kwun, Ik-No;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.115-122
    • /
    • 2002
  • It is often hard to obtain analytical solutions of boundary value problems of shells. Introducing some approximations into the governing equations may allow us to get analytical solutions of boundary value problems. Instead of an analytical procedure, we can apply a numerical method to the governing equations. Since the governing equations of shells of revolution under symmetric load are expressed by ordinary differential equations, a numerical solution of ordinary differential equations is applicable to solve the equations. In this paper, the governing equations of orthotropic spherical shells under symmetric load are derived from the classical theory based on differential geometry, and the analysis is numerically carried out by computer program of Runge-Kutta methods. The numerical results are compared to the solutions of a commercial analysis program, SAP2000, and show good agreement.

  • PDF

MULTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD FOR 3D-PROBLEM

  • Kim, Sang-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.33-44
    • /
    • 2015
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method(SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the Robin condition (mixed interface condition), controlled by a parameter, can optimize SAM's convergence rate. In [7], one formulated the multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. Two-dimensional implementation was presented in [8]. In this paper, we present an implementation for three-dimensional problem.

ON CONSTANT-SIGN SOLUTIONS OF A SYSTEM OF DISCRETE EQUATIONS

  • Agarwal, Ravi-P.;O'Regan, Donal;Wong, Patricia-J.Y.
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.1-37
    • /
    • 2004
  • We consider the following system of discrete equations $u_i(\kappa)\;=\;{\Sigma{N}{\ell=0}}g_i({\kappa},\;{\ell})f_i(\ell,\;u_1(\ell),\;u_2(\ell),\;{\cdots}\;,\;u_n(\ell)),\;{\kappa}\;{\in}\;\{0,\;1,\;{\cdots}\;,\;T\},\;1\;{\leq}\;i\;{\leq}\;n\;where\;T\;{\geq}\;N\;>\;0,\;1\;{\leq}i\;{\leq}\;n$. Existence criteria for single, double and multiple constant-sign solutions of the system are established. To illustrate the generality of the results obtained, we include applications to several well known boundary value problems. The above system is also extended to that on $\{0,\;1,\;{\cdots}\;\}\;u_i(\kappa)\;=\;{\Sigma{\infty}{\ell=0}}g_i({\kappa},\;{\ell})f_i(\ell,\;u_1(\ell),\;u_2(\ell),\;\cdots\;,\;u_n(\ell)),\;{\kappa}\;{\in}\;\{0,\;1,\;{\cdots}\;\},\;1\;{\leq}\;i\;{\leq}\;n$ for which the existence of constant-sign solutions is investigated.

TWO-DIMENSIONAL MUTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD

  • Kim, Sang-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.161-171
    • /
    • 2011
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method(SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the Robin condition (mixed interface condition), controlled by a parameter, can optimize SAM's convergence rate. In [7], one had formulated the multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. However it was not successful for two-dimensional problem. In this paper, we present a new method which utilizes the one-dimensional result to get the optimal convergence rate for the two-dimensional problem.

ON THE CONVERGENCE OF INEXACT TWO-STEP NEWTON-TYPE METHODS USING RECURRENT FUNCTIONS

  • Argyros, Ioannis K.;Hilou, Said
    • East Asian mathematical journal
    • /
    • v.27 no.3
    • /
    • pp.319-337
    • /
    • 2011
  • We approximate a locally unique solution of a nonlinear equation in a Banach space setting using an inexact two-step Newton-type method. It turn out that under our new idea of recurrent functions, our semilocal analysis provides tighter error bounds than before, and in many interesting cases, weaker sufficient convergence conditions. Applications including the solution of nonlinear Chandrasekhar-type integral equations appearing in radiative transfer and two point boundary value problems are also provided in this study.

Numerical method to determine the elastic curve of simply supported beams of variable cross-section

  • Biro, Istvan;Cveticanin, Livija;Szuchy, Peter
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.713-720
    • /
    • 2018
  • In this paper a new numerical method to determine the elastic curve of the simply supported beams of variable cross-section is demonstrated. In general case it needs to solve linear or small nonlinear second order differential equations with prescribed boundary conditions. For numerical solution the initial values of the slope and the deflection of the end cross-section of the beam is necessary. For obtaining the initial values a lively procedure is developed: it is a special application of the shooting method because boundary value problems can be transformed into initial value problems. As a result of these transformations the initial values of the differential equations are obtained with high accuracy. Procedure is applied for calculating of elastic curve of a simply supported beam of variable cross-section. Results of these numerical procedures, analytical solution of the linearized version and finite element method are compared. It is proved that the suggested procedure yields technically accurate results.

UTILIZING GENERALIZED MEIR-KEELER CONTRACTION IN PERIODIC BOUNDARY VALUE PROBLEMS

  • Handa, Amrish
    • The Pure and Applied Mathematics
    • /
    • v.28 no.4
    • /
    • pp.297-314
    • /
    • 2021
  • This manuscript is divided into three segments. In the first segment, we formulate a unique common fixed point theorem satisfying generalized Meir-Keeler contraction on partially ordered metric spaces and also give an example to demonstrate the usability of our result. In the second segment of the article, some common coupled fixed point results are derived from our main results. In the last segment, we investigate the solution of some periodic boundary value problems. Our results generalize, extend and improve several well-known results of the existing literature.

Shear deformation effect in flexural-torsional buckling analysis of beams of arbitrary cross section by BEM

  • Sapountzakis, E.J.;Dourakopoulos, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.141-173
    • /
    • 2010
  • In this paper a boundary element method is developed for the general flexural-torsional buckling analysis of Timoshenko beams of arbitrarily shaped cross section. The beam is subjected to a compressive centrally applied concentrated axial load together with arbitrarily axial, transverse and torsional distributed loading, while its edges are restrained by the most general linear boundary conditions. The resulting boundary value problem, described by three coupled ordinary differential equations, is solved employing a boundary integral equation approach. All basic equations are formulated with respect to the principal shear axes coordinate system, which does not coincide with the principal bending one in a nonsymmetric cross section. To account for shear deformations, the concept of shear deformation coefficients is used. Six coupled boundary value problems are formulated with respect to the transverse displacements, to the angle of twist, to the primary warping function and to two stress functions and solved using the Analog Equation Method, a BEM based method. Several beams are analysed to illustrate the method and demonstrate its efficiency and wherever possible its accuracy. The range of applicability of the thin-walled theory and the significant influence of the boundary conditions and the shear deformation effect on the buckling load are investigated through examples with great practical interest.