• 제목/요약/키워드: Boundary value problem(BVP)

검색결과 24건 처리시간 0.024초

A Computer Oriented Solution for the Fractional Boundary Value Problem with Fuzzy Parameters with Application to Singular Perturbed Problems

  • Asklany, Somia A.;Youssef, I.K.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12호
    • /
    • pp.223-227
    • /
    • 2021
  • A treatment based on the algebraic operations on fuzzy numbers is used to replace the fuzzy problem into an equivalent crisp one. The finite difference technique is used to replace the continuous boundary value problem (BVP) of arbitrary order 1<α≤2, with fuzzy boundary parameters into an equivalent crisp (algebraic or differential) system. Three numerical examples with different behaviors are considered to illustrate the treatment of the singular perturbed case with different fractional orders of the BVP (α=1.8, α=1.9) as well as the classical second order (α=2). The calculated fuzzy solutions are compared with the crisp solutions of the singular perturbed BVP using triangular membership function (r-cut representation in parametric form) for different values of the singular perturbed parameter (ε=0.8, ε=0.9, ε=1.0). Results are illustrated graphically for the different values of the included parameters.

Properties of integral operators in complex variable boundary integral equation in plane elasticity

  • Chen, Y.Z.;Wang, Z.X.
    • Structural Engineering and Mechanics
    • /
    • 제45권4호
    • /
    • pp.495-519
    • /
    • 2013
  • This paper investigates properties of integral operators in complex variable boundary integral equation in plane elasticity, which is derived from the Somigliana identity in the complex variable form. The generalized Sokhotski-Plemelj's formulae are used to obtain the BIE in complex variable. The properties of some integral operators in the interior problem are studied in detail. The Neumann and Dirichlet problems are analyzed. The prior condition for solution is studied. The solvability of the formulated problems is addressed. Similar analysis is carried out for the exterior problem. It is found that the properties of some integral operators in the exterior boundary value problem (BVP) are quite different from their counterparts in the interior BVP.

A novel technique for removing the rigid body motion in interior BVP of plane elasticity

  • Y. Z. Chen
    • Advances in Computational Design
    • /
    • 제9권1호
    • /
    • pp.73-80
    • /
    • 2024
  • The aim of this paper is to remove the rigid body motion in the interior boundary value problem (BVP) of plane elasticity by solving the interior and exterior BVPs simultaneously. First, we formulate the interior and exterior BVPs simultaneously. The tractions applied on the contour in two problems are the same. After adding and subtracting the two boundary integral equations (BIEs), we will obtain a couple of BIEs. In the coupled BIEs, the properties of relevant integral operators are modified, and those integral operators are generally invertible. Finally, a unique solution for boundary displacement of interior region can be obtained.

Forced vibration analysis of a dam-reservoir interaction problem in frequency domain

  • Keivani, Amirhossein;Shooshtari, Ahmad;Sani, Ahmad Aftabi
    • Interaction and multiscale mechanics
    • /
    • 제6권4호
    • /
    • pp.357-375
    • /
    • 2013
  • In this paper, the forced vibration problem of an Euler-Bernoulli beam that is joined with a semi-infinite field of a compressible fluid is considered as a boundary value problem (BVP). This BVP includes two partial differential equations (PDE) and some boundary conditions (BC), which are introduced comprehensively. After that, the closed-form solution of this fluid-structure interaction problem is obtained in the frequency domain. Some mathematical techniques are utilized, and two unknown functions of the BVP, including the beam displacement at each section and the fluid dynamic pressure at all points, are attained. These functions are expressed as an infinite series and evaluated quantitatively for a real example in the results section. In addition, finite element analysis is carried out for comparison.

Forced vibration analysis of a dam-reservoir interaction problem in frequency domain

  • Keivani, Amirhossein;Shooshtari, Ahmad;Sani, Ahmad Aftabi
    • Coupled systems mechanics
    • /
    • 제3권4호
    • /
    • pp.385-403
    • /
    • 2014
  • In this paper, the forced vibration problem of an Euler-Bernoulli beam that is joined with a semi-infinite field of a compressible fluid is considered as a boundary value problem (BVP). This BVP includes two partial differential equations (PDE) and some boundary conditions (BC), which are introduced comprehensively. After that, the closed-form solution of this fluid-structure interaction problem is obtained in the frequency domain. Some mathematical techniques are utilized, and two unknown functions of the BVP, including the beam displacement at each section and the fluid dynamic pressure at all points, are attained. These functions are expressed as an infinite series and evaluated quantitatively for a real example in the results section. In addition, finite element analysis is carried out for comparison.

NONTRIVIAL SOLUTIONS FOR BOUNDARY-VALUE PROBLEMS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Guo, Yingxin
    • 대한수학회보
    • /
    • 제47권1호
    • /
    • pp.81-87
    • /
    • 2010
  • In this paper, we consider the existence of nontrivial solutions for the nonlinear fractional differential equation boundary-value problem(BVP) $-D_0^{\alpha}+u(t)=\lambda[f(t, u(t))+q(t)]$, 0 < t < 1 u(0) = u(1) = 0, where $\lambda$ > 0 is a parameter, 1 < $\alpha$ $\leq$ 2, $D_{0+}^{\alpha}$ is the standard Riemann-Liouville differentiation, f : [0, 1] ${\times}{\mathbb{R}}{\rightarrow}{\mathbb{R}}$ is continuous, and q(t) : (0, 1) $\rightarrow$ [0, $+\infty$] is Lebesgue integrable. We obtain serval sufficient conditions of the existence and uniqueness of nontrivial solution of BVP when $\lambda$ in some interval. Our approach is based on Leray-Schauder nonlinear alternative. Particularly, we do not use the nonnegative assumption and monotonicity which was essential for the technique used in almost all existed literature on f.

EXISTENCE OF TRIPLE POSITIVE SOLUTIONS OF A KIND OF SECOND-ORDER FOUR-POINT BVP

  • Zhao, Junfang;Ge, Weigao
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.183-194
    • /
    • 2009
  • In this paper, we considered the following four-point boundary value problem $\{{x"(t)+h(t)f(t,x(t),x'(t))=0,\;0<t<1\atop%20x'(0)=ax(\xi),\;x'(1)=bx(\eta)}\$. where $0\;<\;{\xi}\;<\;{\eta}\;<\;1,\;{\delta}\;=\;ab{\xi}\;-\;ab{\eta}\;+\;a\;-\;b\;<\;0,\;0\;<\;a\;<\;\frac{1}{\xi},\;0\;<\;b\;<\;\frac{1}{\eta}$. After the discussion of the Green function of the corresponding homogeneous system, we establish some criteria for the existence of positive solutions by using the generalized Leggett-William's fixed point theorem. The interesting point is the expression of the Green function, which is a difficulty for multi-point BVP.

  • PDF

A Boundary Element Method for Nonlinear Boundary Value Problems

  • Park, Yunbeom;Kim, P.S.
    • 충청수학회지
    • /
    • 제7권1호
    • /
    • pp.141-152
    • /
    • 1994
  • We consider a numerical scheme for solving a nonlinear boundary integral equation (BIE) obtained by reformulation the nonlinear boundary value problem (BVP). We give a simple alternative to the standard collocation method for the nonlinear BIE. This method consists of one conventional linear system and another coupled linear system resulting from an auxiliary BIE which is obtained by differentiating both side of the nonlinear interior integral equations. We obtain an analogue BIE through the perturbation of the fundamental solution of Laplace's equation. We procure the super-convergence of approximate solutions.

  • PDF

COMPUTATION OF ADDED MASS AND DAMPING COEFFICIENTS DUE TO A HEAVING CYLINDER

  • Bhatta Dambaru D.
    • Journal of applied mathematics & informatics
    • /
    • 제23권1_2호
    • /
    • pp.127-140
    • /
    • 2007
  • We present the boundary value problem (BVP) for the heave motion due to a vertical circular cylinder in water of finite depth. The BVP is presented in terms of velocity potential function. The velocity potential is obtained by considering two regions, namely, interior region and exterior region. The solutions for these two regions are obtained by the method of separation of variables. The analytical expressions for the hydrodynamic coefficients are derived. Computational results are presented for various depth to radius and draft to radius ratios.

MULTIPLE SYMMETRIC POSITIVE SOLUTIONS OF A NEW KIND STURM-LIOUVILLE-LIKE BOUNDARY VALUE PROBLEM WITH ONE DIMENSIONAL p-LAPLACIAN

  • Zhao, Junfang;Ge, Weigao
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1109-1118
    • /
    • 2009
  • In this paper, we are concerned with the following four point boundary value problem with one-dimensional p-Laplacian, $\{({\phi}_p(x'(t)))'+h(t)f(t,x(t),|x'(t)|)=0$, 0< t<1, $x'(0)-{\delta}x(\xi)=0,\;x'(1)+{\delta}x(\eta)=0$, where $\phi_p$ (s) = |s|$^{p-2}$, p > $\delta$ > 0, 1 > $\eta$ > $\xi$ > 0, ${\xi}+{\eta}$ = 1. By using a fixed point theorem in a cone, we obtain the existence of at least three symmetric positive solutions. The interesting point is that the boundary condition is a new Sturm-Liouville-like boundary condition, which has rarely been treated up to now.

  • PDF