• Title/Summary/Keyword: Boundary layer wind tunnel

Search Result 227, Processing Time 0.024 seconds

Starting Characteristics Study of Scramjet Engine Test Facility(SETF) (스크램제트 엔진 시험설비의 시동특성 연구)

  • Lee, Yang-Ji;Kang, Sang-Hun;Oh, Joong-Hwan;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.451-458
    • /
    • 2010
  • Unlike most aerodynamic wind-tunnel, Scramjet Engine Test Facility(SETF) of Korea Aerospace Research Institute should simulate enthalpy condition at a flight condition. SETF is a blow-down type, high-enthalpy wind tunnel. To attain a flight condition, a highly stagnated air comes into the test cell through a supersonic nozzle. Also, an air ejector of the SETF is used for simulating altitude conditions of the engine, and facility starting. SETF has a free-jet type test cell and this free-jet type test cell can simulate a boundary layer effect between an airplane and engine using facility nozzle, but it is too difficult to predict the nature of the facility. Therefore it is required to understand the starting characteristics of the facility by experiments. In this paper, the starting characteristics of the SETF and modifications of the ejector are described.

  • PDF

Experimental Study of the Multi-Row Disk Inlet

  • Maru, Yusuke;Kobayashi, Hiroaki;Kojima, Takoyuki;Sato, Tetsuya;Tanatsugu, Nobuhiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.634-643
    • /
    • 2004
  • In this paper are presented a concept of a new supersonic air inlet, which is designated a Multi-Row Disk (MRD) inlet, aiming at performance improvement under off-design conditions, and results of wind tunnel tests examined performance characteristics of the MRD inlet. The MRD inlet is frequently called ‘a skeleton inlet’ because of its appearance. The performance of a conventional axisymmetric inlet with a solid center body (spike) deteriorates under off-design Mach number conditions. It is due to the fact that total pressure recovery (TPR) governed by the throat area of inlet and mass capture ratio (MCR) governed by an incidence position of an oblique shock from the spike tip into the cowl can not be controlled independently in such air inlet. The MRD inlet has the spike that is composed of a tip cone and several disks arranged downstream of it, based on the experimental fact that several deep cavities on a conical surface have little negative effect on the boundary layer growth. The overall spike length of the MRD inlet is adjustable to the given flight speed by changing space between disks so that a spillage flow can be controlled independently from controlling the throat area. It could be made clear from the result of wind tunnel tests that the MRD inlet improves TPR by 10% compared with a conventional inlet with a solid spike under off-design conditions.

  • PDF

Airfoil Aerodynamic Analysis for the Helicopter Rotor Blade Preliminary Design (헬리콥터 로터 블레이드 예비설계를 위한 에어포일 공력 해석)

  • Kim, Sang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.21-30
    • /
    • 2005
  • The aerodynamic analysis of helicopter rotor airfoils was performed to generate the basic data for selection and distribution of airfoils at the helicopter rotor blade preliminary design phase.10 airfoils were chosen among the existing rotor airfoils, and the tabulated aerodynamic coefficients which are proper for the aerodynamic analysis using blade element theory were generated. Considering analysis cost, the simple mathematical models were chosen before the wind tunnel test to generate the aerodynamic characteristic curves($C_{l},C_{m},C_{d}$) in full AoA range($-180^{o}\sim180^{o}$) including the reverse flow region. The essential data necessary to the generation of the complete curves were obtained by using the IBLM(Interactive Boundary Layer Method). The generated aerodynamic characteristic curves agree with experimental results qualitatively. Finally, the aerodynamic characteristics of all 10 airfoils were compared and classified according to their own lift or moment characteristics.

Wake Flow Characteristics around the Side Mirror of a Passenger Car (승용차 외장측면거울 주위의 유동 특성)

  • Han, Yong-Oun;Kim, Jung-Hyun;Hwang, In-Ho;Seo, Jung-Bok;Lim, Byung-Hoon;Jung, Ui-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2573-2578
    • /
    • 2007
  • In order to investigate the vortex body frame interaction around the side mirror of a passenger car, velocity vector fields in the wake, pressure distributions and boundary layer flows over both the mirror surface and the mirror housing, have been measured by several experimental tools. It was resulted that only within an half downstream distance of the mirror span there appears the recirculation zone, and also found that vortex trail towards to the driver side window between A and B pillars, making the acoustic noise and vibration. Wake vortex rolls up after this recirculating zone and makes the trail of the vortex center towards the driver side window, which was also confirmed by measurements of wake velocity vectors in the vertical sections of the trail and visualization over the side mirror surfaces as well. It was also observed that total pressure distribution over the mirror surface has the minimum peak near the lower tip region which can be considered as the origin of the vortex center. It can be concluded that the geometrical modification of the lower tip and the upper root area of the mirror housing is the key to control the wake vortex.

  • PDF

Passive control of strength of shock wave (다공벽을 이용한 충격파 강도의 피동제어)

  • Choe, Yeong-Sang;Gwon, Sun-Beom;Jo, Cheol-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.174-184
    • /
    • 1997
  • A shock wave, being an irreversible process, gives rise to entropy increase. A great deal of effort has been made to control shock wave and boundary layer interaction related to energy losses as well as problems of vibration and noise. In the present study, tests are performed on a roof mounted half circular arc in an indraft type supersonic wind tunnel to evaluate the effects of porosity, length and depth of cavity in passive control of shock wave on the attenuation of shock strength by reviewing the measured static pressures at the porous wall and cavity. Also the flow field is visualized by a Schlieren system. The results show that in the present study the porosity of 8% produced the largest reduction of pressure fluctuations and that for the same porosity, the strength of shock wave decreases with the increasings of the depth and length of cavity.

Experimental Study on the Flow Characteristics of Supersonic Turbine with the Axial Gap Ratios (초음속 터빈의 축방향 간격비에 따른 유동 특성에 대한 실험적 연구)

  • Cho, Jong-Jae;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.136-142
    • /
    • 2007
  • A small supersonic wind tunnel was designed and built to study the flow characteristics of a supersonic impulse turbine cascade. The supersonic cascade with a 2-dimensional supersonic nozzle was tested for the axial gap ratio (${\delta}$) of the supersonic turbine that is the one of the turbine design parameter. Firstly, the flow was visualized by a single pass Schlieren system. Next, total and static pressure of the cascade were measured by a pressure scanning system. Highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions, flow characteristics of the supersonic turbine were observed.

An experimental study on the flow characteristics of a supersonic turbine cascade with the leading edge chamfer angle (초음속 터빈의 익렬 앞전 모서리각에 따른 유동 특성에 대한 실험적 연구)

  • Cho Jong-Jae;Kim Kui-Soon;Jeong Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.361-366
    • /
    • 2006
  • A small supersonic wind tunnel was designed and built to study the flow characteristics of a supersonic impulse turbine cascade. The supersonic cascade with a 2-dimensional supersonic nozzle was tested for the leading edge chamfer angle $(\gamma)$ of the supersonic turbine that is the one of the turbine design parameter. Firstly, the flow was visualized by a single pass Schlieren system. Next, total and static pressure of the cascade were measured by a pressure scanning system. Finally, highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions, flow characteristics of the supersonic turbine were observed.

  • PDF

An experimental study on the flow characteristics of a supersonic turbine as the axial gap (초음속 터빈의 축방향 간격에 따른 유동 특성에 대한 실험적 연구)

  • Cho Jong-Jae;Kim Kui-Soon;Kim Jin-Han;Jeong Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.100-105
    • /
    • 2005
  • In this paper, a small supersonic wind tunnel is designed and built to study the flow characteristics of a supersonic impulse turbine cascade. The flow is visualized by means of a single pass Schlieren system. The supersonic cascade with 2-dimensional supersonic nozzle is tested for various gaps between the nozzle and cascade. By the experiment, the flow is visualized and static pressure of the cascade was measured. And highly complicated flow patterns including shocks, nozzle-cascade interaction and shock boundary layer interactions, flow characteristics of the supersonic turbine are observed.

  • PDF

Seismic protection of base isolated structures using smart passive control system

  • Jung, Hyung-Jo;Choi, Kang-Min;Park, Kyu-Sik;Cho, Sang-Won
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.385-403
    • /
    • 2007
  • The effectiveness of the newly developed smart passive control system employing a magnetorheological (MR) damper and an electromagnetic induction (EMI) part for seismic protection of base isolated structures is numerically investigated. An EMI part in the system consists of a permanent magnet and a coil, which changes the kinetic energy of the deformation of an MR damper into the electric energy (i.e. the induced current) according to the Faraday's law of electromagnetic induction. In the smart passive control system, the damping characteristics of an MR damper are varied with the current input generated from an EMI part. Hence, it does not need any control system consisting of sensors, a controller and an external power source. This makes the system much simpler as well as more economic. To verify the efficacy of the smart passive control system, a series of numerical simulations are carried out by considering the benchmark base isolated structure control problems. The numerical simulation results show that the smart passive control system has the comparable control performance to the conventional MR damper-based semiactive control system. Therefore, the smart passive control system could be considered as one of the promising control devices for seismic protection of seismically excited base isolated structures.

Passive Control of Condensation Shock Wave in a Transonic Nozzle (천음속 노즐에서 발생하는 응축충격파의 피동제어)

  • Kim, Hui-Dong;Baek, Seung-Cheol;Gwon, Sun-Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.666-674
    • /
    • 2002
  • A rapid expansion of the moist air or stream through transonic nozzle often leads to not-equilibrium condensation shock, causing a considerable amount of energy loss to the entire flow field. Depending on amount of heat released, condensation shock wave occurs in the nozzle and interacts with the boundary layer flow. In the current study, a passive control technique using a porous wall with a plenum cavity underneath is applied for purpose of alleviation the condensation shock wave in a transonic nozzle. A droplet growth equation is incorporated into two-dimensional wavier-Stokes equation systems. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. An experiment using an indraft transonic wind tunnel is made to validate the present computational results. The results obtained show that the magnitude of condensation shock wave is reduced by the current passive control method.