• Title/Summary/Keyword: Boundary Theory

Search Result 1,706, Processing Time 0.026 seconds

Analytical solutions for bending of transversely or axially FG nonlocal beams

  • Nguyen, Ngoc-Tuan;Kim, Nam-Il;Lee, Jaehong
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.641-665
    • /
    • 2014
  • This paper presents the analytical solutions for the size-dependent static analysis of the functionally graded (FG) beams with various boundary conditions based on the nonlocal continuum model. The nonlocal behavior is described by the differential constitutive model of Eringen, which enables to this model to become effective in the analysis and design of nanostructures. The elastic modulus of beam is assumed to vary through the thickness or longitudinal directions according to the power law. The governing equations are derived by using the nonlocal continuum theory incorporated with Euler-Bernoulli beam theory. The explicit solutions are derived for the static behavior of the transversely or axially FG beams with various boundary conditions. The verification of the model is obtained by comparing the current results with previously published works and a good agreement is observed. Numerical results are presented to show the significance of the nonlocal effect, the material distribution profile, the boundary conditions, and the length of beams on the bending behavior of nonlocal FG beams.

QUADRATURE METHOD FOR EQUATIONS WITH NONLINEAR BOUNDARY CONDITIONS ARISING IN A THERMAL EXPLOSION THEORY

  • Eunkyung Ko
    • East Asian mathematical journal
    • /
    • v.39 no.3
    • /
    • pp.271-278
    • /
    • 2023
  • We consider a 1-dimensional reaction diffusion equation with the following boundary conditions arising in a theory of the thermal explosion {-u"(t) = λf(u(t)), t ∈ (0, l), -u'(0) + C(0)u(0) = 0, u'(l) + C(l)u(l) = 0, where C : [0, ∞) → (0, ∞) is a continuous and nondecreasing function, λ > 0 is a parameter and f : [0, ∞) → (0, ∞) is a continuous function. We establish the extension of Quadrature method introduced in [8]. Using this extension, we provide numerical results for models with a typical function of f and C in a thermal explosion theory, which verify the existence, uniqueness and multiplicity results proved in [6].

Effect of different viscoelastic models on free vibrations of thick cylindrical shells through FSDT under various boundary conditions

  • Daemi, Hossein;Eipakchi, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.319-330
    • /
    • 2020
  • This paper investigates the free vibrations of cylindrical shells made of time-dependent materials for different viscoelastic models under various boundary conditions. During the extraction of equations, the displacement field is estimated through the first-order shear deformation theory taking into account the transverse normal strain effect. The constitutive equations follow Hooke's Law, and the kinematic relations are linear. The assumption of axisymmetric is included in the problem. The governing equations of thick viscoelastic cylindrical shell are determined for Maxwell, Kelvin-Voigt and the first and second types of Zener's models based on Hamilton's principle. The motion equations involve four coupled partial differential equations and an analytical method based on the elementary theory of differential equations is used for its solution. Relying on the results, the natural frequencies and mode shapes of viscoelastic shells are identified. Conducting a parametric study, we examine the effects of geometric and mechanical properties and boundary conditions, as well as the effect of transverse normal strain on natural frequencies. The results in this paper are compared against the results obtained from the finite elements analysis. The results suggest that solutions achieved from the two methods are ideally consistent in a special range.

Analytical Approximation in Deep Water Waves

  • Shin, JangRyong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • The objective of this paper is to present an analytical solution in deep water waves and verify the validity of the theory (Shin, 2015). Hence this is a follow-up to Shin (2015). Instead of a variational approach, another approach was considered for a more accurate assessment in this study. The products of two coefficients were not neglected in this study. The two wave profiles from the KFSBC and DFSBC were evaluated at N discrete points on the free-surface, and the combination coefficients were determined for when the two curves pass the discrete points. Thus, the solution satisfies the differential equation (DE), bottom boundary condition (BBC), and the kinematic free surface boundary condition (KFSBC) exactly. The error in the dynamic free surface boundary condition (DFSBC) is less than 0.003%. The wave theory was simplified based on the assumption tanh $D{\approx}1$ in this paper. Unlike the perturbation method, the results are possible for steep waves and can be calculated without iteration. The result is very simple compared to the 5th Stokes' theory. Stokes' breaking-wave criterion has been checked in this study.

Korean Review on the S.Minuchin's Structural Family Therapy Theory (S.Minuchin 의 구조적 가족치료이론의 한국적 재조명)

  • 손정영;김순옥
    • Journal of Families and Better Life
    • /
    • v.9 no.2
    • /
    • pp.345-366
    • /
    • 1991
  • The concrete purpose of this study is to examine the possibility of applying S.Minuchin's structural family therapy theory to each clinical families so that it can solve efficiently the clinical problems Korean family. The test results are as follows: 1)The Results of Question I : Types of Korean family problems can be divide into six. Then the most frequent type of problem was marital problem. 2) The Results of Question II: Korean normal family showed rater difussed boundary and higher rate of wife dominant type than that of husband dominant type in aspect of boundary and power, and had low tendency toward alignment and neutral adjustment. 3)The Results of Quesion III; Amidst the clinical families, family structural traits of the families which have marital problems showed a clear boundary, the tendency toward alignment, and higher tate of husband dominant type than that of wife dominant type. And family structural traits of children problem family had the tendency of alignment and showed little wife-dominanted families in power. Finally, mother-in -law and daughter-in-law problemed family had several characters such as diffused boundary, the tendency of alignment and high adjustment. 4)The Results of Question IV : As a result of camparing problemed families with normal families in family structure, there was high adaptability of S.Minuchin's structural theory to the two family groups; the groups of marital problems and those of children problem.

  • PDF

A GLOBALITY OF A HOPF BIFURCATION IN A FREE BOUNDARY PROBLEM

  • Ham, Yoon-Mee
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.395-405
    • /
    • 1997
  • A globality of the Hopf bifurcation in a free boundary problem for a parabolic partial differential equation is investigated in this paper. We shall examine the global behavior of the Hopf critical eigenvalues and and apply the center-index theory to show the globality.

  • PDF

Transition Prediction of Flat-plate and Cone Boundary Layers in Supersonic Region Using $e^N$-Method ($e^N$-Method를 이용한 초음속 영역에서의 평판 및 원뿔형 경계층의 천이 예측)

  • Jang, Je-Sun;Park, Seung-O
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.235-238
    • /
    • 2006
  • This paper is about the code that realizes the $e^N$-Method for boundary-layer transition prediction. The $e^N$-Method based on the linear stability theory is applied to predicting boundary-layer transition frequently. This paper deals with the construction of code, stability analysis and the calculation of N-factor. The results of transition prediction using the $e^N$-Method for flat plate/cone compressible boundary-layers are presented.

  • PDF

Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis

  • Arefi, Mohammad;Zur, Krzysztof Kamil
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.615-623
    • /
    • 2020
  • In this paper, free vibration analysis of a functionally graded cylindrical nanoshell resting on Pasternak foundation is presented based on the nonlocal elasticity theory. A two-dimensional formulation along the axial and radial directions is presented based on the first-order shear deformation shell theory. Hamilton's principle is employed for derivation of the governing equations of motion. The solution to formulated boundary value problem is obtained based on a harmonic solution and trigonometric functions for various boundary conditions. The numerical results show influence of significant parameters such as small scale parameter, stiffness of Pasternak foundation, mode number, various boundary conditions, and selected dimensionless geometric parameters on natural frequencies of nanoshell.

Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory

  • Behera, Susanta;Kumari, Poonam
    • Advances in Computational Design
    • /
    • v.3 no.3
    • /
    • pp.213-232
    • /
    • 2018
  • First time, an exact solution for free vibration of the Levy-type rectangular laminated plate is developed considering the most efficient Zig-Zag theory (ZIGT) and third order theory (TOT). The plate is subjected to hard simply supported boundary condition (Levy-type) along x axis. Using the equilibrium equations and the plate constitutive relations, a set of 12 m first order differential homogenous equations are obtained, containing displacements and stress resultant as primary variables. The natural frequencies of a single-layer isotropic, multi-layer composites and sandwich plates are tabulated for three values of length-to-thickness ratio (S) and five set of boundary conditions and further assessed by comparing with existing literature and recently developed 3D EKM (extended Kantorovich method) solution. It is found that for the symmetric composite plate, TOT produces better results than ZIGT. For antisymmetric and sandwich plates, ZIGT predicts the frequency for different boundary conditions within 3% error with respect to 3D elasticity solution while TOT gives 10% error. But, ZIGT gives better predictions than the TOT concerning the displacement and stress variables.

Thermo-mechanical vibration analysis of functionally graded micro/nanoscale beams with porosities based on modified couple stress theory

  • Ebrahimi, Farzad;Mahmoodi, Fateme;Barati, Mohammad Reza
    • Advances in materials Research
    • /
    • v.6 no.3
    • /
    • pp.279-301
    • /
    • 2017
  • Thermo-mechanical vibration characteristics of in homogeneousporous functionally graded (FG) micro/nanobeam subjected to various types of thermal loadings are investigated in the present paper based on modified couple stress theory with consideration of the exact position of neutral axis. The FG micro/nanobeam is modeled via a refined hyperbolic beam theory in which shear deformation effect is verified needless of shear correction factor. A modified power-law distribution which contains porosity volume fraction is used to describe the graded material properties of FG micro/nanobeam. Temperature field has uniform, linear and nonlinear distributions across the thickness. The governing equations and the related boundary conditions are derived by Extended Hamilton's principle and they are solved applying an analytical solution which satisfies various boundary conditions. A comparison study is performed to verify the present formulation with the known data in the literature and a good agreement is observed. The parametric study covered in this paper includes several parameters such as thermal loadings, porosity volume fraction, power-law exponents, slenderness ratio, scale parameter and various boundary conditions on natural frequencies of porous FG micro/nanobeams in detail.