• 제목/요약/키워드: Boundary Theory

검색결과 1,740건 처리시간 0.027초

Small scale effect on the vibration of non-uniform nanoplates

  • Chakraverty, S.;Behera, Laxmi
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.495-510
    • /
    • 2015
  • Free vibration of non-uniform embedded nanoplates based on classical (Kirchhoff's) plate theory in conjunction with nonlocal elasticity theory has been studied. The nanoplate is assumed to be rested on two-parameter Winkler-Pasternak elastic foundation. Non-uniform material properties of nanoplates have been considered by taking linear as well as quadratic variations of Young's modulus and density along the space coordinates. Detailed analysis has been reported for all possible casesof such variations. Trial functions denoting transverse deflection of the plate are expressed in simple algebraic polynomial forms. Application of the present method converts the problem into generalised eigen value problem. The study aims to investigate the effects of non-uniform parameter, elastic foundation, nonlocal parameter, boundary condition, aspect ratio and length of nanoplates on the frequency parameters. Three-dimensional mode shapes for some of the boundary conditions have also been illustrated. One may note that present method is easier to handle any sets of boundary conditions at the edges.

Recommendation for the modelling of Donnell shell: The relationship between non-local parameter and frequency

  • Mohamed A. Khadimallah;Muzamal Hussain;Elimam Ali;Sehar Asghar;Abdelouhed Tounsi
    • Computers and Concrete
    • /
    • 제32권2호
    • /
    • pp.165-172
    • /
    • 2023
  • The vibration analysis of armchair, zigzag and chiral double-walled carbon nanotubes has been developed by inserting the nonlocal theory of elasticity into thin shell theory. First Donnell shell theory is employed while exercising wave propagation approach. Scale effects are realized by using different values of nonlocal parameters under certain boundary conditions. The natural frequencies have been investigated and displayed for various non-local parameters. It is noticed that on increasing nonlocal parameter, the frequency curve tends to decrease. The frequency estimates of clamped-free boundary condition are less than those of clamped-clamped and simply supported computations. The frequency comparisons are presented for armchair, zigzag and chiral nanotubes. The software MATLAB is used to extract the frequencies of double walled carbon nanotubes.

Longitudinal vibration of double nanorod systems using doublet mechanics theory

  • Aydogdu, Metin;Gul, Ufuk
    • Structural Engineering and Mechanics
    • /
    • 제73권1호
    • /
    • pp.37-52
    • /
    • 2020
  • This paper investigates the free and forced longitudinal vibration of a double nanorod system using doublet mechanics theory. The doublet mechanics theory is a multiscale theory spanning between lattice dynamics and continuum mechanics. Equations of motion and boundary conditions for the double nanorod system are obtained using Hamilton's principle. Clamped-clamped and clamped-free boundary conditions are considered. Frequencies and dynamic displacements are determined to demonstrate the effects of length scale parameter of considered material and geometry of the nanorods. It is shown that frequencies obtained by the doublet mechanics theory are bounded from above (van Hove singularity) and unlike classical elasticity theory doublet mechanics theory predicts finite number of modes depending on the length of the nanotube. The present doublet mechanics results have been compared to molecular dynamics, experimental and nonlocal theory results and good agreement is observed between the present and other mentioned results. The difference between wave frequencies of graphite is less than 10% between doublet mechanics and experimental results near to the end of the first Brillouin zone.

A Four-Variable First-Order Shear Deformation Theory Considering the Variation of In-plane Rotation of Functionally Graded Plates

  • Park, Minwo;Choi, Dong-Ho
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1265-1283
    • /
    • 2018
  • This paper presents a four-variable first-order shear deformation theory considering in-plane rotation of functionally graded plates. In recent studies, a simple first-order shear deformation theory was developed and extended to functionally graded plates. It has only four variables, separating the deflection into bending and shear parts, while the conventional first-order shear deformation theory has five variables. However, this simple first-order shear deformation theory only provides good predictions for simply supported plates since it does not consider in-plane rotation varying through the thickness of the plates. The present theory also has four variables, but considers the variation of in-plane rotation such that it is able to correctly predict the responses of the plates with any boundary conditions. Analytical solutions are obtained for rectangular plates with various boundary conditions. Comparative studies demonstrate the effects of in-plane rotation and the accuracy of the present theory in predicting the responses of functionally graded plates.

A FIFTH ORDER NUMERICAL METHOD FOR SINGULAR PERTURBATION PROBLEMS

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • 제26권3_4호
    • /
    • pp.689-706
    • /
    • 2008
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed two point boundary value problems with a boundary layer at one end point. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system. An asymptotically equivalent first order equation of the original singularly perturbed two point boundary value problem is obtained from the theory of singular perturbations. It is used in the fifth order compact difference scheme to get a two term recurrence relation and is solved. Several linear and non-linear singular perturbation problems have been solved and the numerical results are presented to support the theory. It is observed that the present method approximates the exact solution very well.

  • PDF

NUMERICAL METHOD FOR SINGULAR PERTURBATION PROBLEMS ARISING IN CHEMICAL REACTOR THEORY

  • Andargie, Awoke
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.411-423
    • /
    • 2010
  • In this paper, a numerical method for singular perturbation problems arising in chemical reactor theory for general singularly perturbed two point boundary value problems with boundary layer at one end(left or right) of the underlying interval is presented. The original second order differential equation is replaced by an approximate first order differential equation with a small deviating argument. By using the trapezoidal formula we obtain a three term recurrence relation, which is solved using Thomas Algorithm. To demonstrate the applicability of the method, we have solved four linear (two left and two right end boundary layer) and one nonlinear problems. From the results, it is observed that the present method approximates the exact or the asymptotic expansion solution very well.

AN APPROACH FOR SOLVING OF A MOVING BOUNDARY PROBLEM

  • Basirzadeh, H.;Kamyad, A.V.
    • Journal of applied mathematics & informatics
    • /
    • 제14권1_2호
    • /
    • pp.97-113
    • /
    • 2004
  • In this paper we shall study moving boundary problems, and we introduce an approach for solving a wide range of them by using calculus of variations and optimization. First, we transform the problem equivalently into an optimal control problem by defining an objective function and artificial control functions. By using measure theory, the new problem is modified into one consisting of the minimization of a linear functional over a set of Radon measures; then we obtain an optimal measure which is then approximated by a finite combination of atomic measures and the problem converted to an infinite-dimensional linear programming. We approximate the infinite linear programming to a finite-dimensional linear programming. Then by using the solution of the latter problem we obtain an approximate solution for moving boundary function on specific time. Furthermore, we show the path of moving boundary from initial state to final state.