• Title/Summary/Keyword: Boundary Setting

Search Result 125, Processing Time 0.026 seconds

AEMSER Using Adaptive Threshold Of Canny Operator To Extract Scene Text (장면 텍스트 추출을 위한 캐니 연산자의 적응적 임계값을 이용한 AEMSER)

  • Park, Sunhwa;Kim, Donghyun;Im, Hyunsoo;Kim, Honghoon;Paek, Jaegyung;Park, Jaeheung;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.16 no.6
    • /
    • pp.951-959
    • /
    • 2015
  • Scene text extraction is important because it offers some important information on different image based applications pouring in current smart generation. Edge-Enhanced MSER(Maximally Stable Extremal Regions) which enhances the boundaries using the canny operator after extracting the basic MSER shows excellent performance in terms of text extraction. But according to setting the threshold of the canny operator, the result images using Edge-Enhanced MSER are different, so there needs a method figuring out the threshold. In this paper, we propose a AEMSER(Adaptive Edge-enhanced MSER) that applies the method extracting the boundary using the middle value of histogram to Edge-Enhanced MSER to get the canny operator's threshold. The proposed method can acquire better result images than the existing methods because it extracts the area only for the obvious boundaries.

Thermal and Stress Analysis of Power IGBT Module Package by Finite Element Method (유한요소법에 의한 대전력 IGBT 모듈의 열.응력해석)

  • 김남균;최영택;김상철;박종문;김은동
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.23-33
    • /
    • 1999
  • A finite element method was employed fort thermal and stress analyses of an IGBT module of 3-phase full bridge. The effect of material parameters such as substrate material, substrate area, solder thickness on the temperature and stress distributions of the module packages has been investigated. Thermal analysis results have also been compared by setting of boundary conditions such as equivalent heat transfer coefficient or constant temperature at a base metal surface of the package. The increase of ceramic substrate area up to 3 times does little contribution to the reduction(8.9%) of thermal resistance, while contributed a lot to the reduction(60%) of thermal stress. Thicker solder resulted in higher thermal resistance but did slightly reduced thermal stresses. It is revealed by the stress analysis that maximum stress was induced at the region of copper pads which are bonded with ceramic substrate.

  • PDF

PEMFC Optimization Design Using Genetic Algorithm (유전자 알고리즘을 이용한 고분자 전해질 연료전지 최적화 설계)

  • Yang, Woo-Joo;Wang, Hong-Yang;Lee, Dae-Hyung;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.889-897
    • /
    • 2014
  • This paper presents a method for finding an optimized result by using a genetic algorithm (GA) based on a PEMFC analysis result. The conventional analysis method designs fuel cells one-by-one, and each result is compared to obtain the best performance. Because the computational burden of the conventional analysis is enormous, the present optimization process provides an inefficient tool by automatically setting the boundary and material properties and mesh generation. As the change can be reflected automatically in the channel geometry with GA, the fuel cell analysis result with various sizes can be obtained easily. Therefore, the global maximum performance can be obtained through a GA optimization procedure.

A benchmark experiment for analogue modeling of extensional basin formation and evaluation of applicability of centrifuge test (인장 분지 형성을 구현하기 위한 상사 모델링 벤치마크 실험 및 원심모형실험의 적용성 평가)

  • Lee, Sung-Bok;Park, Heon-Joon
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.605-614
    • /
    • 2018
  • For physical experiments like analogue modeling that designed for studying geological deformation, reproducibility of the deformation is important to guarantee the reliability of the experiment. In this study, the normal fault generated by extensional stress is benchmarked using a sand box model. The scaling factors for the modeling test are considered and the experiments are conducted by setting the appropriate material, extensional stress, and boundary condition in the same way as in a benchmark experiment. In addition, a large centrifuge facility is used to vary the centrifugal acceleration and extension rate in the same sized model to account for the scaling factors of the physical quantity during extensional behavior. At 1 g benchmark condition and a centrifugal field at 10 g, a constant rate of the extensional stress is implemented and the topographic evolution is reliably measured. In this study, the reliability and applicability of large centrifuge model tests are evaluated for formulating experiments designed to study geological deformation.

Classifying Indian Medicinal Leaf Species Using LCFN-BRNN Model

  • Kiruba, Raji I;Thyagharajan, K.K;Vignesh, T;Kalaiarasi, G
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3708-3728
    • /
    • 2021
  • Indian herbal plants are used in agriculture and in the food, cosmetics, and pharmaceutical industries. Laboratory-based tests are routinely used to identify and classify similar herb species by analyzing their internal cell structures. In this paper, we have applied computer vision techniques to do the same. The original leaf image was preprocessed using the Chan-Vese active contour segmentation algorithm to efface the background from the image by setting the contraction bias as (v) -1 and smoothing factor (µ) as 0.5, and bringing the initial contour close to the image boundary. Thereafter the segmented grayscale image was fed to a leaky capacitance fired neuron model (LCFN), which differentiates between similar herbs by combining different groups of pixels in the leaf image. The LFCN's decay constant (f), decay constant (g) and threshold (h) parameters were empirically assigned as 0.7, 0.6 and h=18 to generate the 1D feature vector. The LCFN time sequence identified the internal leaf structure at different iterations. Our proposed framework was tested against newly collected herbal species of natural images, geometrically variant images in terms of size, orientation and position. The 1D sequence and shape features of aloe, betel, Indian borage, bittergourd, grape, insulin herb, guava, mango, nilavembu, nithiyakalyani, sweet basil and pomegranate were fed into the 5-fold Bayesian regularization neural network (BRNN), K-nearest neighbors (KNN), support vector machine (SVM), and ensemble classifier to obtain the highest classification accuracy of 91.19%.

A study on the use of a Sabangseok and changes in the structure at the tumulus of the royal tomb during in the J oseon dynasty the 17th and 18th centuries (17~18세기 조선왕릉의 봉릉 구조개선에 따른 사방석(四方石)의 등장과 소멸)

  • Shin, Ji-Hye
    • Journal of architectural history
    • /
    • v.30 no.4
    • /
    • pp.67-78
    • /
    • 2021
  • This is a study on the structural changes of the tumulus and causes setting up a Sabangseok at the front of the tumulus at the royal tomb in the JoSeon dynasty, during the 17th~18th centuries. The Sabangseok was first used in the tumulus of Mongnueng(穆陵) in 1630. It is a multipurpose stone for boundary, foundation of the tumulus and blocking the sliding down of the tumulus. It was set up, when constructing a Yeongneung(寧陵) in 1673. But the vast spill of tumulus soil made it improve structure of the Sabangseok. Consequently, when the Yeongneung was re-constructed, the structure of the tumulus was fundamentally improved. The soil layer on the lime of the subterranean chamber became eliminated. Also the lime of the tumulus and the lime of the subterranean chamber became a united structure. The Sabangseok was still used until 1757 on account of precedents, although it would become unnecessary after structural improvement of the tumulus in 1673. In 1757, Yeongjo(The 21th monarch of the Joseon Dynasty) commanded repeal on the use of the Sabangseok, when constructing the Hongneung(tomb of Queen Jeongseong). The decision and discussions about abolition on the use of the Sabangseok was recorded in Gukjosangryebopyeon.

Development of the new normal fashion pajamas using recycle PET and silk mixed textiles (리사이클 PET와 실크 복합소재를 활용한 뉴노멀 패션 파자마 개발)

  • Lim, Jiyoung;Song, Young-eun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.23 no.4
    • /
    • pp.133-148
    • /
    • 2021
  • Due to the COVID-19 pandemic, many people started working from home while avoiding unnecessary going-outs. As the 'stay-at-home life' becomes standard daily life, the pajamas market is absorbing young consumers, especially targeting Generation MZ, by using one-mile fashion that breaks down the boundary with everyday clothes. Also, owing to the demand for environmentally-friendly textiles, based on the strengthened environmental regulations, the development of textiles considering the environment is expanding. Thus, the purpose of this study is to develop fashion pajamas using environmentally-friendly textiles targeting Generation MZ. After theoretically considering the current status of recycled PETs and the pajama market by referring to preceding research, relevant books, and Internet data, this study performed the process setting up the design concepts, developing textiles, developing textile designs, and developing pajamas designs. As a result, this study wove two kinds of mixed textiles using recycled PETs and silk with the concept of 'Going out pajamas', and designed a total four patterns to be applied to those textiles, then digitally printed them. Using the developed textiles, this study produced a total four kinds of pajamas that were practical, trendy, and also good to be used as clothes for going-out. The consumers who are exhausted from the limited environment of the COVID-19 pandemic, are requesting comfortable and trendy in & out door fashion. For this reason, the results of this study are significant in the aspect of suggesting the new-normal fashion trend for pajamas designs.

Characterization of ABS/PC/POE Thermoplastic Composites and Prediction of Mechanical Properties by Geometry Simulation (ABS/PC/POE 열가소성 복합재료의 특성평가 및 시뮬레이션을 통한 물리적 성능 예측 연구)

  • Yu, Seong-Hun;Lee, Jong-Hyuk;Yeo, Dong-Hyun;Shin, Yong-Ho;Park, Jong-Su;Sim, Jee-Hyun
    • Textile Coloration and Finishing
    • /
    • v.34 no.2
    • /
    • pp.117-126
    • /
    • 2022
  • In this study, thermoplastic composites were manufactured using ABS(acrylonitrile butadiene styrene), PC(polycarbonate), and POE(polyolefin elastomer), which are thermoplastic plastics. Twin screw extruder and injection molding were used to manufacture thermoplastic composites. When the ABS/PC/POE thermoplastic composite material was manufactured, the POE mass fraction was set to 1 to 5 wt.%, and the thermal and mechanical properties according to the POE mass fraction were analyzed. Based on the physical properties of ABS/PC/POE, a 3D model in the form of an e-bike frame was created. After setting the boundary conditions, when an external load is applied, geometry simulation was performed to predict product performance. The ABS/PC/POE thermoplastic composite material exhibited the best physical properties when the mass fraction of POE was 3 wt.%. In the simulation results for the physical properties of the 3D model in the form of an e-bike frame, the best physical properties were shown when the mass fraction of POE was 2 ~ 3 wt.%. As a result, the manufacturing conditions for ABS/PC/POE thermoplastic composite materials were set, and research was conducted to reduce product development costs and development time.

Development of Easy-to-Use Crane-Tip Controller for Forestry Crane

  • Ki-Duck, Kim;Beom-Soo, Shin
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.4
    • /
    • pp.239-248
    • /
    • 2022
  • Forestry crane work in a forest harvester or forwarder is regarded as one of most hard work requiring a very high level of operation skill. The operator must handle two or more multi-axes joysticks simultaneously to control the multiple manipulators for maneuvering the crane-tip to its intended location. This study has been carried out to develop a crane-tip controller which can intuitively maneuver the crane-tip, resulting in improving the productivity by decreasing the technical difficulty of control as well as reducing the workload. The crane-tip controller consists of a single 2-axis joystick and a control algorithm run on microcontroller. Lab-scale forestry crane was constructed using electric cylinders. The crane-tip control algorithm has the crane-tip follow the waypoints generated on the given path considering the dead band region using LBO (Lateral Boundary Offset). A speed control gain to change the speed of relevant cylinders relatively is applied as well. By the P (Proportional) control within the control interval of 20 msec, the average error of crane-tip control on the predefined straight path turned out to be 14.5 mm in all directions. When the joystick is used the waypoints are generated in real time by the direction signal from the joystick. In this case, the average error of path control was 12.4 mm for straight up, straight forward and straight down movements successively at a certain constant speed setting. In the slant movement of crane-tip by controlling two axes of joystick simultaneously, the movement of crane-tip was controlled in the average error of 15.9 mm when the crane-tip is moved up and down while moving toward forward direction. It concluded that the crane-tip control was possible using the control algorithm developed in this study.

A Study on the Repair Work for Spindle Key with Damaged Part in Planner Miller by Directed Energy Deposition (DED 방식을 적용한 플래너 밀러의 손상된 스핀들 키 보수 작업에 관한 연구)

  • Lee, Jae-Ho;Song, Jin-Young;Jin, Chul-Kyu;Kim, Chai-Hwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.699-706
    • /
    • 2022
  • In this study, Directed energy deposition (DED) among additive manufacturing is applied to repair damaged spindle key parts of planner miller. The material of the spindle key is SCM415, and the P21 Powder is used. In order to find the optimal deposition conditions for DED equipment, a single-line deposition experiment is conducted to analysis five parameters. The laser power affects the width, and the height is a parameter affected by coaxial gas and powder gas. In addition, laser power, powder feed rate, coaxial gas, and powder gas are parameters that affect dilution. Otimal deposition is that 400 W of laser power, 4.0 g/min of powder feed rate, 6.5 L/min of coaxial gas, 3.0 L/min of powder gas and 4.5 L/min of shield gas. By setting the optimum conditions, a uniform deposition cross section in the form of an ellipse can be obtained. Damage recovery process of spindle key consists of 3D shape design of the base and deposition parts, deposition path creation and deposition process, and post-processing. The hardness of deposited area with P21 powder on the SCM415 spindle key is 336 HV for the surface of the deposition, 260 HV for the boundary area, and 165 HV for the base material.