• Title/Summary/Keyword: Boundary Noise

Search Result 948, Processing Time 0.034 seconds

Proposal of Image Noise Improvement Algorithm for Implementing Hand Gestures

  • Moon, Yu-Sung;Choi, Ung-Se;Kim, Jung-Won
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1465-1468
    • /
    • 2019
  • The image noise improvement algorithm proposed in this paper extracts the boundary line by using the window of the binarized image to detect the gesture motion. Boundary line blurring is prevented by improving Gaussian noise generated during video output. To improve gesture recognition in low-light environments, an image noise enhancement algorithm has been designed to provide an output image close to the base image. Analyzing the experimental results, we found almost 10% improvement in the results compared to the results of the existing Median filter.

Suppression of Sound Radiation from Composite Plate Structures Using Piezoelectric Materials (압전재료를 이용한 복합재료 평판 구조물의 음향파워 억제)

  • 윤기원;김승조
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.781-790
    • /
    • 1996
  • The goal of current research is to suppress the acoustic noise radiated from vibration of composite plate structure. The induced noise can be reduced through the control of the corresponding structural vibration modes by using the piezoelectric materials as actuator. The acoustic fields are to be analyzed through the boundary element method (BEM) based on the Rayleigh intergral equation and structural system through the finite element method (FEM). The suppression of rediated sound is studied by adaping the piezoelectric material as the distributed actuator. Numerical results are presented on the sound radiation from composite plate of arbitrary boundary conditions, the noise reduction adapting the piezoelectric materials as distributed actuator. The results show the effectiveness and possibility of piezoelectric actuator in the control of sound radiation from composite structure.

  • PDF

Development of Noise Analysis Software-'NASPFA' in Medium-to-high Frequency Ranges using Power Flow Boundary Element Method (파워흐름경계요소법을 이용한 중고주파 소음해석 소프트웨어 'NASPFA' 개발)

  • Lee, Ho-Won;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.949-953
    • /
    • 2004
  • In this paper, Power Flow Boundary Element Method(PFBEM) is studied as the numerical method for the vibration and sound predictions of complex structures in medium-to-high frequency ranges. NASPFA, the sound analysis software based on PFBEM, is developed and is used for the vibro-acoustic analysis. And also the developed software is used for the prediction of interior and exterior sound fields of vibrating structures and for the analysis of the multi-domain problems. To verify the accuracy, NASPFA is applied to the prediction of the energy distribution in the simple structures, and its results are compared with exact PFA solutions. And various practical vehicle systems are modeled and the distributions of the acoustical energy density are successfully predicted.

  • PDF

Fuzzy-based gaseous object segmentation on image plane (Fuzzy를 이용한 영상에서의 기체분리)

  • Kim, Won-Ha;Park, Min-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.169-171
    • /
    • 2001
  • Unlike rigid objects, the edge intensity of a gaseous object is various along the object boundary (edge intensities of some pixels on a gaseous object boundary are weaker than those of small rigid objects or noise itself). Therefore, the conventional edge detectors may not adequately detect boundary-like edge pixels for gaseous objects. In this paper A new methodology for segmenting gaseous object images is introduced. Proposed method consists of fuzzy-based boundary detector applicable to gaseous as well as rigid objects and concave region filling to recover object regions.

  • PDF

A method for removal of reflection artifact in computational fluid dynamic simulation of supersonic jet noise (초음속 제트소음의 전산유체 모사 시 반사파 아티팩트 제거 기법)

  • Park, Taeyoung;Joo, Hyun-Shik;Jang, Inman;Kang, Seung-Hoon;Ohm, Won-Suk;Shin, Sang-Joon;Park, Jeongwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.364-370
    • /
    • 2020
  • Rocket noise generated from the exhaust plume produces the enormous acoustic loading, which adversely affects the integrity of the electronic components and payload (satellite) at liftoff. The prediction of rocket noise consists of two steps: the supersonic jet exhaust is simulated by a method of the Computational Fluid Dynamics (CFD), and an acoustic transport method, such as the Helmholtz-Kirchhoff integral, is applied to predict the noise field. One of the difficulties in the CFD step is to remove the boundary reflection artifacts from the finite computation boundary. In general, artificial damping, known as a sponge layer, is added nearby the boundary to attenuate these reflected waves but this layer demands a large computational area and an optimization procedure of related parameters. In this paper, a cost-efficient way to separate the reflected waves based on the two microphone method is firstly introduced and applied to the computation result of a laboratory-scale supersonic jet noise without sponge layers.

Noise Control Boundary Image Matching Using Time-Series Moving Average Transform (시계열 이동평균 변환을 이용한 노이즈 제어 윤곽선 이미지 매칭)

  • Kim, Bum-Soo;Moon, Yang-Sae;Kim, Jin-Ho
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.327-340
    • /
    • 2009
  • To achieve the noise reduction effect in boundary image matching, we use the moving average transform of time-series matching. Our motivation is based on an intuition that using the moving average transform we may exploit the noise reduction effect in boundary image matching as in time-series matching. To confirm this simple intuition, we first propose $\kappa$-order image matching, which applies the moving average transform to boundary image matching. A boundary image can be represented as a sequence in the time-series domain, and our $\kappa$-order image matching identifies similar images in this time-series domain by comparing the $\kappa$-moving average transformed sequences. Next, we propose an index-based matching method that efficiently performs $\kappa$-order image matching on a large volume of image databases, and formally prove the correctness of the index-based method. Moreover, we formally analyze the relationship between an order $\kappa$ and its matching result, and present a systematic way of controlling the noise reduction effect by changing the order $\kappa$. Experimental results show that our $\kappa$-order image matching exploits the noise reduction effect, and our index-based matching method outperforms the sequential scan by one or two orders of magnitude.

Flow-induced Instability of Multi-wall Carbon Nanotubes for Various Boundary Conditions (경계조건에 따른 다중벽 탄소나노튜브의 유체유발 불안정성 변화)

  • Yun, Kyung-Jae;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.805-815
    • /
    • 2010
  • This paper studies the influence of internal moving fluid and flow-induced structural instability of multi-wall carbon nanotubes conveying fluid. Detailed results are demonstrated for the variation of natural frequencies with flow velocity, and the flow-induced divergence and flutter instability characteristics of multi-wall carbon nanotubes conveying fluid and modelled as a thin-walled beam are investigated. Effects of various boundary conditions, Van der Waals forces, and non-classical transverse shear and rotary inertia are incorporated in this study. The governing equations and three different boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extended Galerkin's method which enables us to obtain more exact solutions compared with conventional Galerkin's method. This paper also presents the comparison between the characteristics of single-wall and multi-wall carbon nanotubes considering the effect of van der Waals forces. Variations of critical flow velocity for different boundary conditions of two-wall carbon nanotubes are investigated and pertinent conclusion is outlined.

Acoustic Scattering from Circular Cylinder by Periodic Sources (주기적인 음원에 의한 원형 실린더의 음향 산란)

  • Lee, Duck-Joo;Kim, Yong-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.41-47
    • /
    • 2007
  • Scattering fields of two dimensional acoustic waves by a circular cylinder are investigated. The present numerical approach for the acoustic scattering problem has difficulties of numerical robustness, long-time stability and suitability of far-field boundary treatments. The time-dependent periodic acoustic source is used to analyze Interference patterns between incident waves and waves reflected by the cylinder. Characteristic boundary algorithms coupled with 4th order Modified-Flux-Approach ENO(essentially non-oscillatory) schemes are employed in generalized coordinates to examine the effect of the wane frequency on the interference patterns. Non-reflecting boundary conditions, which is crustal for accurate computations of aeroacoustic problems, are used not to contaminate scattering fields by reflected waves at the outer boundary. Computed scattering fields show the circumferential acoustic modes generated by interacting between acoustic sources and scattered waves. At a lower frequency, the wave passes almost straight through the cylinder without Interacting with circular cylinder. Simulation results are presented and compared with the analytic solution. Computed RMS-pressure distribution on the cylinder wall is good agreement with exact solution.

Noise and flow analysis of lift-type disk wind power System (양력형 디스크 풍력 발전기의 유동 및 소음 해석)

  • Ko, Seungchul;Na, Jisung;Lee, Joon Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.3
    • /
    • pp.52-56
    • /
    • 2017
  • In this study, we investigate the flow characteristics of lift-type disk which behaves the up-down motion using the large eddy simulation (LES) and immersed boundary method (IBM). Also, we perform the noise analysis using pressure field at 1.35 m distance and reveal the cause of noise to observe the vortical structure analysis of flow result. It is observed that vortical structure and wind shear were generated at leading edge and tower with high velocity deficit and flow separation. High magnitude of flow noise was observed in low frequency range which is from 30 Hz to 60 Hz. It was observed that vortical structure at leading edge was generated in frequency range from 33.3 Hz to 41.6 Hz. Temporal characteristic in vortical structure at leading edge was similar to noise characteristics, having the similar frequency ranges.

Underwater Radiated Noise Analysis for Commercial Ship Using Power Flow Analysis (파워흐름해석법을 이용한 상선의 수중방사소음해석)

  • Kwon, Hyun-Wung;Hong, Suk-Youn;Song, Jee-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.30-36
    • /
    • 2012
  • Recently, the underwater radiated noises generated from large commercial ships have become a globally important issue. Countries with large ports and environmental protection organizations demand strict safety guidelines in relation to underwater radiated noise. In this paper, the coupled PFFE/PFBE method is used to investigate the vibration and underwater radiated noise of a commercial ship. PFFEM is employed to analyze the vibrational responses of the commercial ship, and PFBEM is applied to analyze the underwater radiation noise. The vibrational energy of the structure is treated as an acoustic intensity boundary condition of PFBEM to calculate the underwater radiation noise. Numerical simulations are presented for the commercial ship under various frequencies, and reliable results are obtained.