• Title/Summary/Keyword: Boundary Modeling

검색결과 889건 처리시간 0.029초

자동 음성 분할을 위한 음향 모델링 및 에너지 기반 후처리 (Acoustic Modeling and Energy-Based Postprocessing for Automatic Speech Segmentation)

  • 박혜영;김형순
    • 대한음성학회지:말소리
    • /
    • 제43호
    • /
    • pp.137-150
    • /
    • 2002
  • Speech segmentation at phoneme level is important for corpus-based text-to-speech synthesis. In this paper, we examine acoustic modeling methods to improve the performance of automatic speech segmentation system based on Hidden Markov Model (HMM). We compare monophone and triphone models, and evaluate several model training approaches. In addition, we employ an energy-based postprocessing scheme to make correction of frequent boundary location errors between silence and speech sounds. Experimental results show that our system provides 71.3% and 84.2% correct boundary locations given tolerance of 10 ms and 20 ms, respectively.

  • PDF

3차원 시추공 레이다 모델링 (Three-Dimensional Borehole Radar Modeling)

  • 예병주
    • 자원환경지질
    • /
    • 제33권1호
    • /
    • pp.41-50
    • /
    • 2000
  • Geo-radar survey which has the advantage of high-resolution and relatively fast survey has been widely used for engineering and environmental problems. Three-dimensional effects have to be considered in the interpretation of geo-radar for high-resolution. However, there exists a trouble on the analysis of the three dimensional effects. To solve this problem an efficient three dimension numerical modeling algorithm is needed. Numerical radar modeling in three dimensional case requires large memory and long calculating time. In this paper, a finite difference method time domain solution to Maxwell's equations for simulating electromagnetic wave propagation in three dimensional media was developed to make economic algorithm which requires smaller memory and shorter calculating time. And in using boundary condition Liao absorption boundary. The numerical result of cross-hole radar survey for tunnel is compared with real data. The two results are well matched. To prove application to three dimensional analysis, the results with variation of tunnel's incident angle to survey cross-section and the result when the tunnel is parallel to the cross-section were examined. This algorithm is useful in various geo-radar survey and can give basic data to develop dat processing and inversion program.

  • PDF

층간분리로 인한 연계강성이 복합재 적층판의 좌굴거동에 미치는 영향 (Influence of Couplings on the Buckling Behavior of Composite Laminates with a Delamination)

  • 김효진;홍창선
    • 대한기계학회논문집
    • /
    • 제19권2호
    • /
    • pp.354-362
    • /
    • 1995
  • The finite element modeling is used to study the buckling and postbuckling behavior of composite laminates with an embedded delamination. Degenerated shell element and rigid beam element are utilized for the finite element modeling. In the nonlinear finite element formulation, the updated Lagrangian description method based on the second Piola-Kirchhoff stress tensor and the Green strain tensor is used. The buckling and postbuckling behavior of composite laminates with a delamination are investigated for various delamination sizes, stacking sequences, and boundary conditions. It is shown that the buckling load and postbuckling behavior of composite laminates depend on the buckling model which is determined by the delamination size, stacking sequence and boundary condition. Also, results show that introduction of couplings can reduce greatly the buckling load.

Variational surface design under normal field guidance

  • Wu, Weidong;Yang, Xunnian
    • Journal of Computational Design and Engineering
    • /
    • 제2권3호
    • /
    • pp.129-136
    • /
    • 2015
  • This paper proposes a novel method for shape design of a Bezier surface with given boundary curves. The surface is defined as the minimizer of an extended membrane functional or an extended thin plate functional under the guidance of a specified normal field together with an initial prescribed surface. For given boundary curves and the guiding normal field, the free coefficients of a Bezier surface are obtained by solving a linear system. Unlike previous PDE based surface modeling techniques which construct surfaces just from boundaries, our proposed method can be used to generate smooth and fair surfaces that even follow a specified normal field. Several interesting examples are given to demonstrate the applications of the proposed method in geometric modeling.

응력파동해석에 대한 전산역학적 접근방법 (Approaches of the Computaional Mechanics on the Stress Wave Analysis)

  • 조윤호;정현규;김승호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.415-429
    • /
    • 2002
  • Various modeling techniques for ultrasonic wave propagation and scattering problems in finite solid media are presented. Elastodynamic boundary value problems in inhomogeneous multi-layered plate-like structures are set up for modal analysis of guided wave propagation and numerically solved to obtain dispersion curves which show propagation characteristics of guided waves. As a powerful modeling tool to overcome such numerical difficulties in wave scattering problems as the geometrical complexity and mode conversion, the Boundary Element Method(BEM) is introduced and is combined with the normal mode expansion technique to develop the hybrid BEM, an efficient technique for modeling multi-mode conversion of guided wave scattering problems.

  • PDF

Numerical modeling of seawater flow through the flooding system of dry ocks

  • Najafi-Jilani, A.;Naghavi, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제1권2호
    • /
    • pp.57-63
    • /
    • 2009
  • Numerical simulations have been carried out on the flooding system of a dry located at the south coasts of Iran. The main goals of seawater flow haracteristics in the intake channels conditions of the flooding system are imposed in the modeling. The upstream boundary condition is the tidal fluctuations of sea water level. At the downstream, the gradually rising water surface elevation in the dry described in a transient boundary condition. The numerical results are compared with available laboratory a good agreement is obtained. The seawater discharge through the flooding system and the required time to filling up the dry dock is determined at the worst case. The water current velocity and pressure on the rigid boundaries are discussed.

솔리드 모델 변환과 특징형상인식을 위한 기하 추론 (3D Geometric Reasoning for Solid Model Conversion and Feature Recognition)

  • 한정현
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제3권2호
    • /
    • pp.77-84
    • /
    • 1997
  • 3차원 물체를 표현하는 솔리드 모델링 기법으로 Constructive Solid Geometry(CSG)와 경계표현 (Boundary Representation: BRep)이 널리 쓰이고 있다. 현대의 솔리드 모델링 시스템들은 대개 이 두 기법을 모두 지원하고 있으며, CSG와 BRep간 상호 변환은 매우 중요한 문제이다. 하지만, BRep에서 CSG로의 변환은 아직 완전히 해결되지 않은 과제이다. 이 논문은 BRep을 CSG의 특수한 형태인 Destructive Solid Geometry(DSG)로 변환하는 3차원 기하 추론 알고리즘을 소개한다. BRep에서 DSG를 만들어내는 알고리즘은 CAD와 CAM을 통합시키는 특정 형상 인식 분야에 직접 응용될 수 있다.

  • PDF

비다양체 형상 모델링을 위한 간결한 경계 표현 및 확장된 오일러 작업자 (Compact Boundary Representation and Generalized Eular Operators for Non-manifold Geometric Modeling)

  • 이상헌;이건우
    • 한국CDE학회논문집
    • /
    • 제1권1호
    • /
    • pp.1-19
    • /
    • 1996
  • Non-manifold topological representations can provide a single unified representation for mixed dimensional models or cellular models and thus have a great potential to be applied in many application areas. Various boundary representations for non-manifold topology have been proposed in recent years. These representations are mainly interested in describing the sufficient adjacency relationships and too redundant as a result. A model stored in these representations occupies too much storage space and is hard to be manipulated. In this paper, we proposed a compact hierarchical non-manifold boundary representation that is extended from the half-edge data structure for solid models by introducing the partial topological entities to represent some non-manifold conditions around a vertex, edge or face. This representation allows to reduce the redundancy of the existing schemes while full topological adjacencies are still derived without the loss of efficiency. To verify the statement above, the storage size requirement of the representation is compared with other existing representations and present some main procedures for querying and traversing the representation. We have also implemented a set of the generalized Euler operators that satisfy the Euler-Poincare formula for non-manifold geometric models.

  • PDF

Computational modeling of the atmospheric boundary layer using various two-equation turbulence models

  • Juretic, Franjo;Kozmar, Hrvoje
    • Wind and Structures
    • /
    • 제19권6호
    • /
    • pp.687-708
    • /
    • 2014
  • The performance of the $k-{\varepsilon}$ and $k-{\omega}$ two-equation turbulence models was investigated in computational simulations of the neutrally stratified atmospheric boundary layer developing above various terrain types. This was achieved by using a proposed methodology that mimics the experimental setup in the boundary layer wind tunnel and accounts for a decrease in turbulence parameters with height, as observed in the atmosphere. An important feature of this approach is pressure regulation along the computational domain that is additionally supported by the nearly constant turbulent kinetic energy to Reynolds shear stress ratio at all heights. In addition to the mean velocity and turbulent kinetic energy commonly simulated in previous relevant studies, this approach focuses on the appropriate prediction of Reynolds shear stress as well. The computational results agree very well with experimental results. In particular, the difference between the calculated and measured mean velocity, turbulent kinetic energy and Reynolds shear stress profiles is less than ${\pm}10%$ in most parts of the computational domain.

탄성파 파동 방정식 모델링에서 중간점 차분 기법을 이용한 지표 경계 조건의 처리 (The Treatment of the Free-surface Boundary Conditions by Finite-Difference Midpoint-Averaging Scheme for Elastic Wave Equation Modeling)

  • 박권규;서정희;신창수
    • 지구물리와물리탐사
    • /
    • 제3권2호
    • /
    • pp.61-69
    • /
    • 2000
  • 지표 경계 조건은 유한 차분법을 이용한 탄성파 파동 방정식 모델링에서 수치해의 정확성을 떨어뜨리는 한편 포아송 비에 따른 해의 안정성을 제한하는 주 요인이 된다. 본 연구에서는 지표 경계 조건과 같은 Neumann 경계 조건의 처리에 효과적인 적분법(integration method)에 기반 하여 차분식을 유도하고, 이로부터 중간점 차분 기법을 제안하였다. 또한, 개발된 알고리즘을 Lamb의 문제에 적용하여 이론해와 비교함으로써 타당성을 검증하였다.

  • PDF