• Title/Summary/Keyword: Boundary Lubricants

Search Result 95, Processing Time 0.02 seconds

Characteristic of Friction on Texturing Bearing Steel with Ultrasonic Hole Machine

  • Shin, Mijung;H., Angga Senoaji;Kwon, SoonHong;Chung, SungWon;Kwon, SoonGoo;Park, JongMin;Kim, JongSoon;Choi, WonSik
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • We carry out experiments to characterize textured bearing steel with varying hole density and depth. Textured surface is believed to reduce the friction coefficient, and improve performance and wearing caused by third-body contact. We employ three lubrication regime conditions based on the Stribeck curve: boundary lubrication, mixed lubrication, and hydrodynamic lubrication. Ultrasonic machining is an untraditional machining method wherein abrasive grit particles are used. The hammering process on the work piece surface by abrasive provides the desired form. In this study, we create multi-holes on the bearing steel surface for texturing purposes. Holes are formed by an ultrasonic machine with a diameter of 0.534 mm and a depth of about 2-4 mm, and they are distributed on the contact surface with a density between 1.37-2.23%. The hole density over the surface area is an important factor affecting the friction. We test nine types of textured specimens using four times replication and compare them with the untextured specimen using graphs, as well as photographs taken using a scanning electron microscope. We use Analyzes variant in this experiment to find the correlation between each pair of treatments. Finally, we report the effect of hole density and depth on the friction coefficient.

Thermal Deformation Induced Preload Changein the Tilting Pad Journal Bearing (열변형으로 인한 틸팅패드 저널베어링의 예압 변화)

  • Suh, Junho;Hwang, Cheolho
    • Tribology and Lubricants
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • This paper focuses on the thermal deformation induced preload change in the tilting pad journal bearing, using a three-dimensional (3D) thermo-hydro-dynamic (THD) approach. Preload is considered as a critical factor in designing the tilting pad journal bearing. The initial preload measured under nil external load and nil thermal gradient is influenced by two factors, namely, the thermal deformation and elastic deformation. Thermal deformation is due to a temperature distribution in the bearing pads, whereas the elastic deformation is due to fluid forces acting on the pads. This study focuses on the changes induced in preload and film clearance due to thermal deformation. The generalized Reynolds equation is used to evaluate the force of the fluid and the 3D energy equation is used to calculate the temperature of the lubricant. The abovementioned equations are combined by establishing a relationship between viscosity and temperature. The heat transfer within the bearing pads, the lubricant, and the spinning journal is calculated using the heat flux boundary condition. The 3D Finite Element Method (FEM) is used in modeling the (1) heat conduction in the spinning journal and bearing pads, (2) thermal gradient induced thermal distortion of the spinning journal and pads, and (3) viscous shearing, and heat conduction and convection in a thin film. This evaluation method has an increased fidelity, and it can prove to be a cost-effective tool that can be used by designers to predict the dynamic behavior of a bearing.

Influence of Groove Location on Lubrication Characteristics of the Piston and Cylinder in a Linear Compressor (그루브 위치가 리니어 압축기용 피스톤과 실린더의 윤활특성에 미치는 영향)

  • Jeon, W.J.;Son, S.I.;Lee, H.;Kim, J.W.;Kim, K.W.
    • Tribology and Lubricants
    • /
    • v.32 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • In this paper hydrodynamic lubrication analysis is carried out to investigate the effects of groove location on the lubrication performance of a piston and cylinder system in a linear compressor. The rectangle shaped grooves having a constant groove depth and width are applied on the lubrication area of the piston. The Universal Reynolds equation is used to calculate the oil film pressure, and the Elrod algorithm with the finite different method is used to solve the governing equation. The JFO boundary condition is applied to predict cavitation regions. Transient analysis for different locations of the grooves on the piston is carried out using the typical operating condition of the linear compressor in order to estimate the variations of frictional power losses and minimum film thicknesses. When the grooves are applied on the lubrication area, both the frictional power loss and the minimum film thickness decrease. The frictional power loss can be reduced effectively, while maintaining a minimum film thickness to enable the piston operation without direct contact with the cylinder surface, by means of choosing a proper location of the grooves. The optimum location of the grooves to improve a lubrication performance depends on the operation condition or the system requirements specification.

Finite Element Analysis of Pivot Stiffness for Tilting Pad Bearings and Comparison to Hertzian Contact Model Calculations (유한 요소 해석을 통해 계산된 틸팅 패드 베어링의 피봇 강성과 Hertzian 접촉 모델 해석 결과 비교)

  • Lee, Tae Won;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.205-211
    • /
    • 2014
  • Recent studies emphasize the importance of pivot stiffness in the analysis of tilting pad bearings (TPBs). The present paper develops a finite element model of the pad pivot and compares the predicted pivot stiffness to the results of Hertzian contact model calculations. Specifically, a finite element analysis generates tetrahedral mesh models with ~40,000 nodes for a ball-socket pivot and ~50,000 nodes for a rocker-back pivot. These models assume a frictionless boundary condition in the contact area. Increasing the applied loads on the pad in conjunction with increasing time steps ensures rapid convergence during the nonlinear numerical analysis. Predictions are performed using the developed finite element model for increasing the differential diameters between the pad pivot (or ball) and the bearing housing (or socket). The predictions show that the pivot contact area increases with decreasing differential diameters and increasing applied loads. Further, the maximum deformation occurring at the pivot center increases with increasing differential diameters and increasing applied loads. The pivot stiffness increases nonlinearly with decreasing differential diameters and increasing applied loads. Comparisons of results of the developed finite element model to those of Hertzian contact model calculations assuming a small contact area show that the latter model underestimates the pivot stiffnesses predicted by the finite element models of the ball-socket and rocker-back pivots, particularly for small differential diameters. This result implies the need for cautionduring the design of pivot stiffness by the Hertzian contact model.

Lubricating Performance of Polyalkylene Glycol and Polyolester Base Oils analyzed from the Model of Interaction between Environmentally adapted Polar base oils and Additive (TCP) (환경친화적인 극성기유와 첨가제(TCP)의 상호작용모델로부터 해석된 Polyalkylene glycol 및 Polyolester Base Oil의 윤활작용)

  • ;Masabumi Masuko
    • Tribology and Lubricants
    • /
    • v.17 no.2
    • /
    • pp.146-152
    • /
    • 2001
  • Environmentally adapted synthetic base oils of polyalkylene glycols (PAGs) and polyol esters (POEs) show a high polarity because of their functional groups containing oxygen atom. The lubricating performance of these polar base oils was investigated by using a four-ball tribometer under boundary lubrication condition. Four polyalkylene glycols and five polyol ester base oils were used as sample base oils of high polarity. A mineral oil (MO) and alkylnaphthalene (AN) were used as low polarity base oils. Tricrecylphosphate (TCP) was added to all the base oils, in the range of 10 mmol/L-2000 mmol/L, as an antiwear additive. All the TCP-for-mutated base oils showed optimum concentration characteristics for minimizing wear. The order of optimum concentration of all the base oils was in a good accordance with the order of relative stability of TCP in base oils. The interaction model on solvation between additive and different polar base oils can expect the stability order of TCP. Thus, the model on solvation can explain well the order of optimum concentration of all the base oils, by using the effect of polarity (dielectric constant, $\varepsilon$) and molecular size (molecular weight, MW) of them on stability of TCP in polar base oils. Finally, a good correlation of the optimum concentration for all the base oils was obtained when it was arranged as a function of C∝(M $W_{Base Oil}$/M $W_{TCP}$)$^{-2}$.71/.($\varepsilon$$_{Base Oil}$)$^{3.38}$ by these two parameters.s..

Tribology Characteristics in 300 μm of Hexagonal Array Dimple Pattern

  • Choi, H. J.;Hermanto, A. S.;Kwon, S. H.;Kwon, S. G.;Park, J. M.;Kim, J. S.;Chung, S. W.;Chae, Y. H.;Choi, W. S.
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.308-315
    • /
    • 2015
  • In the tribological performance of materials, a textured surface reduces the friction coefficient and wear. This study investigates the effects of a pattern of 300 µm dimples in a hexagonal array on the tribological characteristics. Previous studies investigated 200 µm dimples by using a similar material and method. There are three frictional conditions based on the Stribeck curve: boundary friction, mixed friction, and fluid friction. In this experiment, we investigated the frictional characteristics by conducting frictional tests at sliding speeds ranging from 9.6 rpm to 143.3 rpm and a normal load ranging from 13.6 N to 92 N. We used a photolithography method to create dimples for surface texturing. We used five specimens with different dimple densities 10%, 15%, 20%, 25%, and 30% in this study. The dimple density on the surface area is one of the important factors affecting the friction characteristics. The duty number graph indicates a fully developed fluid friction regime. Fluid friction occurs at a velocity of 28.7-143.3 rpm. We observed the best performance at a dimple density of 10% and a dimple diameter of 300 µm in the hexagonal array, the lowest friction coefficient at 0.0037 with 9.6 rpm 9.6N load, and the maximum friction coefficient at 0.0267 with 143.3 rpm 92N load.

Mechanism of Lubricity Improvement by Biodiesels (바이오디젤 윤활성 향상 메커니즘)

  • Lim, Young-Kwan;Lee, Jae-Min;Kim, Jong-Ryeol;Ha, Jong-Han
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.95-100
    • /
    • 2016
  • As an alternative fuel, biodiesel has excellent lubricating property. Previously, our research group reported that the properties of biodiesels depended on their composed molecular structure. In this study, we investigate lubricity and the mechanism of lubricity improvement of synthesized biodiesel molecules. We synthesize four types of biodiesel components from fatty acid via fisher esterification and soybean biodiesel from soybean oil via transesterification in high yield (92-96%). We analyze the lubricity of the five 5 types of biodiesel using HFRR (high frequency reciprocating rig). We estimate that the mechanism of lubricity is relevant to the molecular structure and structure conversion of biodiesel. The test results indicate that the longer the length of molecules and the higher the content of olefin, the better the lubricity of the biodiesel molecules. However, the wear scar size of the first test samples’ do not show a regular pattern with the wear scar size of the second test samples’. Moreover, we investigated the structure conversion of the biodiesels by using GC-MS for the recovered biodiesel samples from the HFRR test. However, we do not detect structure conversion. Thus, we conclude that the lubricity of biodiesel depends on how effectively solid adsorption and boundary lubrication occurs based on the size of the molecule and the content of olefin in the molecule. In addition, HFRR test condition in not sufficient for Diels-Alder cyclization of biodiesel components.

Tribology Characteristics in 200 μm of Hexagonal Array Dimple Pattern

  • Choi, W. S.;Angga, S.H.;Kwon, S. H.;Kwon, S. G.;Park, J. M.;Kim, J. S.;Chung, S. W.;Chae, Y. H.
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.50-55
    • /
    • 2015
  • This study investigates the effects of a pattern of 200 μm dimples in a hexagonal array on tribological characteristics. A textured surface might reduce the friction coefficient and wear caused by third-body abrasion and thus improve the tribological performance. There are three friction conditions based on the Stribeck curve: boundary friction, mixed friction, and fluid friction conditions. In this experiment, we investigate the friction characteristics by carrying out the friction tests at sliding speeds ranging from 0.06 to 0.34 m/s and normal load ranging from 10 to 100 N. We create dimple surfaces for texturing by using the photolithography method. There are three kinds of specimens with different dimple densities ranging from 10% to 30%. The dimple density on the surface area is the one of the important factors affecting friction characteristics. Friction coefficient generally decreases with an increase in the velocity and load, indicating that the lubrication regime changes depending on the load and velocity. The fluid friction regime is fully developed, as indicated by the duty number graph. Fluid friction occurs at a velocity of 0.14-0.26 m/s. The best performance is seen at 10% dimple density and 200 μm dimple circle in the hexagonal array.

Effect of Normal Force and Temperature on Tribological Properties of Wet Clutch Friction Material (하중 및 온도에 따른 습식 클러치 마찰재의 트라이볼로지 특성)

  • Park, Hyeseon;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • The tribological properties of paper-based friction materials are crucial to the performance of a wet clutch system. In this work, the friction and wear characteristics of a paper-based friction material in boundary lubrication state was experimentally investigated using a pin-on-reciprocating tribotester under various normal forces and temperatures. It was found that the wear rate of the friction material increased from $5.8{\times}10^{-6}mm^3/N/cycle$ to $5.5{\times}10^{-5}mm^3/N/cycle$ after 1,700 cycles of testing at $80^{\circ}C$ as normal force increased from 2 N to 7 N. The friction coefficient was also found to increase from 0.135 to 0.155 with increasing normal force from 2 N to 7 N. The increase in contact pressure with increasing normal force may be responsible for these results. In addition, as temperature increased from $20^{\circ}C$ to $80^{\circ}C$, the wear rate of the friction materials increased from $2.0{\times}10^{-5}mm^3/N/cycle$ to $3.6{\times}10^{-5}mm^3/N/cycle$ while the friction coefficient decreased from 0.163 to 0.146. This result may be associated with the decrease in the hardness of friction materials with increasing temperature. Furthermore, plastic deformation on the friction materials was mainly observed after the test. The outcome of this work may be useful to gain a better understanding of the tribological properties of friction materials, and therefore can contribute to the development of friction materials with enhanced performance for wet clutch systems.

Rotor Coastdown and Acceleration Performances of High-speed Motors Supported on Ball Bearings and Gas Foil Bearings (볼 베어링 및 가스 포일 베어링으로 지지되는 고속 전동기의 회전체 관성정지 및 가속 성능 연구)

  • Mun, HyeongWook;Seo, JungHwa;Kim, TaeHo
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.123-131
    • /
    • 2019
  • This study characterizes the coastdown performances of two small electric motors supported on high-speed ball bearings (BBs) and gas foil bearings (GFBs), and it predicts their acceleration performances. The two motors have identical permanent magnetic rotors and mating stators. However, the shaft of the GFBs has a larger mass and polar/transverse moments of inertia than that of the BBs. Motor coastdown tests demonstrate that the rotor speed decreases linearly with the BBs and nonlinearly with the GFBs. A simple model for the BBs predicts a constant drag torque and linear decay of speed with time. The test data validate the model predictions. For the GFBs, the hydrodynamic lubrication model predictions reveal that the drag torque increases linearly with speed, and the speed decreases exponentially with time. The predictions agree very well with the test data in the speed range of 100-30 krpm. The boundary lubrication model predicts a constant drag torque and linear decay of speed with time. The predictions agree well with the test data below 15 krpm. Mixed lubrication occurs in the speed range of 30-15 krpm. Rotor acceleration performances are predicted based on the characteristics of deceleration performances. The GFBs require more time to reach 100,000 krpm than the BBs because of their larger shaft polar moment of inertia. However, predictions for the assumed identical polar moment of inertia reveal that the GFBs have a nearly identical acceleration performance to that of the BBs with a motor torque greater than $0.03N{\cdot}m$.