• Title/Summary/Keyword: Boundary Layer

Search Result 2,594, Processing Time 0.034 seconds

Determination of the Position of the Airspeed Probe Using CFD (전산유동해석에 의한 비행선 풍속계 설치 위치 선정)

  • Ok Honam;Chang Byeong-Hee;Lee Yung-Gyo;Oh Soo-Hun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.164-170
    • /
    • 2002
  • Numerical analysis of the flowfield around a 50-meter class airship is performed to determine the optimal position for the airspeed probe installation. The turbulent flow around the hull with gondola is analyzed to examine the characteristics of the data measured by the probe attached to the gondola, and they turned out to show the nonlinear relation between the freestream and measured angles of attack and be influenced by the Reynolds number. New position of the hull nose was proposed and the effect of various factors on the flowfield around the nose was also examined. The analysis with a panel method showed that the effect of empennage was negligible, and the effect of gondola and boundary layer thickness had also little impact. It was shown that the freestream angle of attack would be the only independent variable for the probe position around the hull nose in constructing the calibration matrix.

  • PDF

Numerical Analysis for the Performance of an Axial-flow Compressor with Three-Dimensional Viscous Effect (삼차원 점성 효과를 고려한 축류 압축기의 성능에 대한 수치해석)

  • Han Y. J.;Kim K. Y.;Ko S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.182-187
    • /
    • 2003
  • Numerical analysis of three-dimensional vicous flow is used to compute the design speed operating line of a transonic axial-flow compressor. The Navier-Stokes equation was solved by an explicit finite-difference numerical scheme and the Baldwin-Lomax turbulence model was applied. A spatially-varying time-step and an implicit residual smoothing were used to improve convergence. Two-stage axial compressor of a turboshaft engine developed KARI was chosen for the analysis. Numerical results show reasonably good agreements with experimental measurements made by KARI. Numerical solutions indicate that there exist a strong shock-boundary layer interaction and a subsequent large flow separation. It is also observed that the shock is moved ahead of the blade passage at near-stall condition.

  • PDF

Accurate Computations for Multi-dimensional flows : Spatial Discretization (다차원 유동의 정확한 수치해석 : 공간 차분법)

  • Kim Kyu Hong;Kim Chongam;Rho Oh-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.5-10
    • /
    • 2003
  • In order to reduce the excessive numerical dissipation, the new spatial discretization scheme is introduced. The present method in this paper has the formula that has an additional procedure of defining transferred properties at a cell-interface, based on AUSMPW+. The newly defined transferred property could eliminate numerical dissipation effectively in non-flow aligned grid system. In addition, the present method guarantees the monotonic characteristic in capturing a discontinuity. Through a stationary or moving contact discontinuity and a stationary or moving shock discontinuity, a vortex discontinuity and shock wave/ boundary layer interaction, it is verified that the accuracy of the present method is improved.

  • PDF

A COMPUTATIONAL STUDY ON THE CHARACTERISTICS OF FLOWFIELDS IN MICRONOZZLES (초소형 노즐 유동장에 관한 수치적 연구)

  • Seo, J.H.;Cho, H.G.;Lee, D.H.;Jung, S.C.;Myong, R.S.;Huh, H.I.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.38-43
    • /
    • 2007
  • Owing to the rapid progress in manufacturing technology of microscale devices, there are active research works in developing microscale propulsion systems. In this study, gas flows in nozzles with size of milli and sub-millimeter are investigated by using a CFD code based on the Navier-Stokes equations. The prediction results were compared with theoretical results of quasi-one-dimensional nozzle flow and experiment data. In general, theoretical values agree very well with the CFD results. However, theoretical values begin to deviate from the CFD and experimental data for relatively small Reynolds numbers and the nozzle shape with rectangular cross section. The primary reason for this discrepancy is due to the existence of the thick boundary layer at the wall in low Reynolds flows.

An analytical method for free vibration analysis of functionally graded sandwich beams

  • Bouakkaz, K.;Hadji, L.;Zouatnia, N.;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.23 no.1
    • /
    • pp.59-73
    • /
    • 2016
  • In this paper, a hyperbolic shear deformation beam theory is developed for free vibration analysis of functionally graded (FG) sandwich beams. The theory account for higher-order variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The material properties of the functionally graded sandwich beam are assumed to vary according to power law distribution of the volume fraction of the constituents. The core layer is still homogeneous and made of an isotropic material. Based on the present refined beam theory, the equations of motion are derived from Hamilton's principle. Navier type solution method was used to obtain frequencies. Illustrative examples are given to show the effects of varying gradients and thickness to length ratios on free vibration of functionally graded sandwich beams.

Analytical modelling of multilayer beams with compliant interfaces

  • Skec, L.;Schnabl, S.;Planinc, I.;Jelenic, G.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.465-485
    • /
    • 2012
  • Different mathematical models are proposed and their analytical solutions derived for the analysis of linear elastic Reissner's multilayer beams. The models take into account different combinations of contact plane conditions, different material properties of individual layers, different transverse shear deformations of each layer, and different boundary conditions of the layers. The analytical studies are carried out to evaluate the influence of different contact conditions on the static and kinematic quantities. A considerable difference of the results between the models is obtained.

Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium

  • Lata, Parveen
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.439-451
    • /
    • 2018
  • In the present investigation, a plane P (longitudinal) wave is made incident upon a transversely isotropic magnetothermoelastic solid slab of uniform thickness, interposed between two different semi-infinite viscoelastic solids. The transversely isotropic magnetothermoelastic sandwiched layer is homogeneous with combined effects of two temperature, rotation and Hall current in the context of GN Type-II and Type-III (1993) theory of thermoelasticity. The amplitude ratios of various reflected and refracted waves are obtained by using appropriate boundary conditions. The effect of energy dissipation on various amplitude ratios of longitudinal wave with angle of incidence are depicted graphically. Some cases of interest are also deduced from the present investigation.

Experimental and Numerical Study on Performance Analysis of a Planar Diffuser (평판형 디퓨져의 성능해석에 관한 실험 및 수치해석)

  • 조대환;이철재;배석태;김성동
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.63-68
    • /
    • 2001
  • In wide angle diffuser, the cross-sectional area increases so rapidly that separation can be avoided only by using boundary layer control. In this study, an experimental and numerical study is performed on performance of a diffuser with guide damper. A series of measurements were carried out to investigate the characteristics of diffuser for different divergence angle(${\phi}=7^{\circ}, \;10.5^{\circ}\;and\; 14^{\circ}$) of guide damper and angle of ${\phi}=10.5^{\circ}$ was through to be the best among three cases. Judging from the results, guide damper can be used as an effective means of improvement for diffuser performance.

  • PDF

Surface Phenomena of Molecular Clusters by Molecular Dynamics Method (분자운동력학법에 의한 분자괴의 표면현상)

  • Maruyama, Shigeo;Matsumoto, Sohei;Ogita, Akihiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.11-18
    • /
    • 1996
  • Liquid droplets of water and argon surrounded by their vapor have been simulated by the milecular dynamics method. To explore the surface phenomena of clusters, each molecule is classified into 'liquid', 'surface', or 'vapor' with respect to the number of neighbor molecules. The contribution of a 'surface' molecule of the water cluster to the far infrared spectrum is almist the same as that of the 'liquid' molecule. Hence, the liquid-vapor interface is viewed as geometrically and temporally varying boundary of 'liquid' molecules with only a single layer of 'surface' molecules that might have different characteristics from the 'liquid' molecules. The time scale of the 'phase change' of each molecule is estimated for the argon cluster by observing the instantancous kinetic and potential energies of each molecule. To compare the feature of clusters with macroscopic droplets, the temperature dependence of the surface tension of the argon cluster is estimated.

  • PDF

Free-Stream Turbulence Effect on the Heat (Mass) Transfer Characteristics on a Turbine Rotor Surface (자유유동 난류강도가 터빈 동익 표면에서의 열(물질)전달 특성에 미치는 영향)

  • Lee, Sang-Woo;Park, Jin-Jae;Kwon, Hyun-Goo;Park, Byung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1442-1446
    • /
    • 2004
  • The heat (mass) transfer characteristics on the blade surface of a first-stage turbine rotor cascade has been investigated by employing the naphthalene sublimation technique. A four-axis profile measurement system is employed for the measurements of the local heat (mass) transfer coefficient on the curved blade surface. The experiments are carried out for two free-stream turbulence intensities of 1.2% and 14.7%. The high free-stream turbulence results in more uniform distributions of heat load on the both pressure and suction surfaces and in an early boundary-layer separation on the suction surface. The heat (mass) transfer enhancement on the suction surface due to the endwall vortices is found to be relatively small under the high free-stream turbulence.

  • PDF