# 자유유동 난류강도가 터빈 동익 표면에서의 열(물질)전달 특성에 미치는 영향

이 상 우<sup>†</sup>·박 진 재\*·권 현 구\*·박 병 규\*\*

## Free-Stream Turbulence Effect on the Heat (Mass) Transfer Characteristics on a Turbine Rotor Surface

Sang Woo Lee, Jin Jae Park, Hyun Goo Kwon, and Byung Kyu Park

Key Words: Turbulence Intensity (난류강도), Integral Length Scale (적분길이스케일), Blade Surface Heat Transfer (블레이드 표면 열전달), Linear Turbine Rotor Cascade (선형 터빈 동익 익열)

#### Abstract

The heat (mass) transfer characteristics on the blade surface of a first-stage turbine rotor cascade has been investigated by employing the naphthalene sublimation technique. A four-axis profile measurement system is employed for the measurements of the local heat (mass) transfer coefficient on the curved blade surface. The experiments are carried out for two free-stream turbulence intensities of 1.2% and 14.7%. The high free-stream turbulence results in more uniform distributions of heat load on the both pressure and suction surfaces and in an early boundary-layer separation on the suction surface. The heat (mass) transfer enhancement on the suction surface due to the endwall vortices is found to be relatively small under the high free-stream turbulence.

### 1. 서 론

가스터빈 엔진의 효율을 향상시키기 위해서는 터빈 입구온도(turbine inlet temperature)를 높여야 하며, 현재 터빈입구 온도는 1500℃ | 이르고 있 다. 이와 같이 높은 입구온도 때문에 고온의 가 스와 접하는 터빈의 여러 구성 요소에 대한 냉각 이 필수적이며, 이들 고온 부품 표면에서의 정확 한 열전달계수를 알아야 적절한 냉각 시스템을 도입할 수 있다. 따라서 열전달계수의 측정은 터

↑ 금오공과대학교 기계공학부
 E-mail : swlee@kumoh.ac.kr
 TEL : (054)467-4209 FAX : (054)467-4050
 \* 금오공과대학교 대학원
 \*\* 서울대학교 기계항공공학부

빈의 열시스템 설계에 있어서 매우 중요한 기초 데이타이다.

Bayley와 Priddy<sup>(1)</sup>는 끝벽의 영향이 무시할 정 도로 작은 블레이드 미드스팬 근처 2차원 유동 영역에서 터빈 블레이드 표면에서의 열전달 특성 을 연구하였다. Chen과 Goldstein<sup>(2)</sup>은 나프탈렌 승 화법을 적용하여 블레이드 흡입면에서의 열전달 특성을 연구하였다. 그들은 미드스팬 근처 2차원 유동 영역 뿐만 아니라 끝벽 근처 3차원 유동영 역에서의 열(물질)전달 특성을 파악하였다. Goldstein 등<sup>(3)</sup>은 자유유동 난류강도가 매우 작을 때, 선형 터빈 블레이드 압력면 및 흡입면 표면 에서의 대류 전달현상에 대하여 연구하였다.

앞에서 소개된 연구들은 난류강도가 비교적 낮 은 경우에 국한되어 있다. 그러나 실제 연소기 출구 유동이 유입되는 터빈 통로의 입구 유동은 15% 이상의 매우 높은 난류강도와 큰 난류 길이



Fig. 1 Overall view of cascade wind tunnel.

스케일을 가지고 있다<sup>(4)</sup>. Wang 등<sup>(5)</sup>은 연소기 출 구 레벨의 고 난류강도가 터빈 블레이드 표면에 서의 열(물질)전달에 미치는 영향에 대하여 연구 하였는데, 끝벽의 영향이 없는 미드스팬에서만 열전달계수를 측정하였다. 최근 들어 Lee 등<sup>(6)</sup>은 연소기 출구 레벨의 자유유동 난류강도 하에서 끝벽에서의 경계층 박리 현상과 열(물질)전달 특 성에 대하여 연구한 바 있다.

지금까지 터빈 블레이드 표면에서의 열전달 특 성에 대한 연구는 국내외에서 폭넓게 진행되어 많은 성과가 있었다. 그러나 연소기 출구 레벨의 자유유동 난류유동이 끝벽 근처 영역을 포함하는 전체 블레이드 표면에서의 열전달에 미치는 영향 에 관한 연구는 아직 이루어지지 않고 있다. 본 연구에서는 실제 엔진 레벨의 난류강도와 적분길 이스케일(integral length scale)이 터빈 제 1 단 동 익의 끝벽(endwall) 근처 영역을 포함하는 블레이 드 표면 전체에서의 열(물질)전달 특성에 미치는 영향에 대하여 연구하였다.

### 2. 실 험

2.1 실험장치

본 연구에서 사용된 익열 풍동(cascade wind tunnel)은 Fig. 1에서와 같이 개방형 풍동, 제트 분 사형 난류발생기, 입구덕트, 익열 등으로 구성된 다. 개방형 풍동은 면적축소비가 9.0이고, 출구의 단면은 600 mm × 400 mm이다. 이 개방형 풍동 을 통과한 균일 유동은 난류발생기에서 스케일이 큰 난류유동으로 바뀌어 익열 입구덕트로 유입된 다. 이 입구덕트의 단면은 420 mm × 320 mm이 고, 폭방향 중심에서 그 길이는 1.2 m이다. 이것



Fig. 2 Arrangement of turbine blade cascade

의 입구 상하 벽에는 직경 2 mm의 트립와이어 (trip wire)와 사포(sand paper)가 차례로 부착되어 있어서, 상하 벽 근처의 유동이 다시 난류 경계 층으로 발달된다. 실험장치의 가장 하류에 위치 한 터빈 익열에는 총 6개의 선형 블레이드가 설 치되어 있다. 이것은 산업용 가스터빈의 터빈 제 1 단 동익의 미드스팬 형상을 근거로 large-scale 로 제작되었다. Fig. 2에 이 익열의 중요 제원이 제시되어 있으며, 그 중 코드길이(c), 피치(p), 스 팬(s) 등은 각각 217.8mm, 151.6mm, 320.0mm 등 이고, 그 회전각(turning angle)은 119도이다. Fig. 2에서 s\_P와 s\_는 각각 블레이드 선단 정체점으로 부터 압력면과 흡입면 표면을 따라 이동한 거리 를 나타낸다. 실제 엔진의 터빈 내부에 존재하는 높은 난류유동 조건을 실현하기 위하여, 본 연구 에서는 Fig. 1에서와 같은 연소기 시뮬레이터 형 태의 제트 분사형 난류발생기를 도입하였다.<sup>(7,8)</sup> 이 난류발생기에 대한 자세한 내용은 Lee 등<sup>(6)</sup>에 자세히 언급되어 있다.

본 연구에서는 IBM PC AT-486으로 온도, 경계 층 속도, 난류 측정시스템 전체를 온라인화 하였 으며, 이를 위해 다기능입출력보드 (National Instruments, AT-MIO-16D-H-9)가 컴퓨터에 내장되 어 있다. 압력변환기 (Furness Controls, FCO12)에 의해 변환된 압력신호는 다기능입출력보드의 12 비트 A-D변환기를 통해 컴퓨터로 전달된다. 입구 자유유동의 난류강도와 적분길이스케일(integral length scale)을 측정하기 위해서 정온형 열선유속 계(Kanomax, 1010)와 선형화기(Kanomax, 1013)를 사용하였다. 적분길이스케일을 측정하는 방법에



# Fig. 3 Schematic diagram of 4-axis profile measurement system.

는 여러가지 기법이 있지만, 본 연구에서는 Camp 와 Shin<sup>(9)</sup>과 같이 auto-correlation 함수로부터 적분 시간스케일(integral time scale)을 구하고, Taylor의 가정을 이용하여 적분길이스케일을 구하는 방법 을 사용하였다. 이때 열선유속계의 선형화기를 통과한 난류신호 AC 성분은 10 kHz의 low-pass 필터를 통과한 뒤, 50 kHz의 속도로 데이터를 샘 플링하였다.

### 2.2 측정 방법

열전달의 연구에 있어서 열전달과 물질전달의 상사성을 이용한 실험방법이 널리 이용되고 있 다. 나프탈렌승화법은 그 중 한 방법으로 열전달 계(heat transfer system)와 똑같은 기하학적 형상으 로 나프탈렌을 주조하여 일정시간 유동장에 노출 시킨 뒤, 승화된 나프탈렌의 깊이를 측정하여 물 질전달계수를 구하고, 적절한 상사 관계식을 이 용하여 열전달계수를 구하는 방법이다.<sup>(10)</sup>

나프탈렌승화법을 적용하여 열전달 특성을 연 구하려면, 측정하고자 하는 영역이 열전달계와 동일한 형상의 나프탈렌 면으로 주조되어야 한 다. 나프탈렌이 주조되는 부분은 블레이드 스팬 의 70%이며, 주조된 나프탈렌의 두께는 2 mm이 다(Fig. 3). 실제 주조를 해 본 결과, 모든 면에서 매끄러운 표면을 얻는 것이 쉬운 일이 아니었고, 주로 블레이드 흡입면 하류 쪽에서 결점이 발견 되었다.

주형의 각 위치에서 나프탈렌의 승화된 깊이를 측정하기 위해서 선형가변차동변환기 즉 LVDT(Linear Variable Differential Transformer)를 사용하였다. 이 LVDT (Sensotec, model 060-3590-02)의 최대 측정범위는 ±1.0mm이며 그 분해능은 1 µm이다. Fig. 3은 블레이드 표면에서 나프탈렌의 승화된 깊이를 측정하는데 사용되는 4축 형상측정시스템의 개략도를 나타낸다. 그림 에서 알 수 있듯이 이 측정 시스템은 크게 지지 대, 블레이드 회전장치, 3차원 자동이송장치 등으 로 구분된다. 지지대는 알루미늄 프로파일로 제 작되었고, 정밀가공된 정반 위에 위치한다. 블레 이드 회전장치는 이 지지대에 설치되어 있으며, 주조된 블레이드를 정밀하게 회전시키는 작용을 한다. 블레이드의 회전은 하모닉 감속기어 (Oriental Motor, UHG50-2C)가 장착된 각도 분해 0.36도의 AC 서보모터(Oriental 능 Motor. KXSM240HG1-BL)에 의해 이루어진다. 이 하모닉 기어는 백래쉬가 없는 것이 특징이며, 그 감속비 는 50이다. 따라서 본 회전장치의 각도 분해능은 0.0072도에 불과하다. 실제 승화깊이 측정시, 스 팬 방향 (z-축 방향)으로 16개, 흡입면과 압력면을 모두 합해 코드 방향 (x-축 방향)으로 62개 등 총 992 위치에서 승화깊이를 측정하였다.

본 연구에서는 자유유동의 난류강도가 매우 작 은 경우(Case 1)와 제트 분사형 난류발생기가 설 치된 경우(Case 2)에 대하여 실험을 수행하였다. Case 1의 경우에는 난류발생기 대신 3차원 수축 부(contraction nozzle)이 설치되었다. 두 경우 모두 자유유동속도를 15 m/s로 고정하고 실험을 수행 하였다. 따라서 입구유동의 Reynolds 수 ( $\text{Re}_{\infty} = U_{\infty}c/v$ )는 2.09×10<sup>5</sup>이었다. Case 1의 경 우 x/c = -1.5에서 자유유동 난류강도는 1.2%이 며, Case 2의 경우 자유유동 난류강도와 적분길 이스케일은 각각 14.7%와 80.0mm이었다.

### 3. 결과 및 검토

Fig. 4는 난류발생기가 설치되지 않은 경우 (Case 1)의 압력면 국소 Sherwood 수 Sh의 분포 를 나타내고, Fig. 5는 난류발생기가 설치된 경우 (Case 2)의 압력면 국소 Sherwood 수 Sh의 분포 를 나타낸다. Fig. 5의 결과를 Fig. 4와 비교하면, 일반적으로 자유유동 난류강도에 관계없이 Sh의 정성적인 변화는 거의 동일하였다. 그러나 전체 적으로 난류강도가 큰 경우의 Sh가 더 폭방향으 로 균일한 분포를 보이며, 이러한 경향은 끝벽



Fig. 4 Contours of Sh on the pressure surface in the low turbulence case



Fig. 5 Contours of Sh on the pressure surface in the high turbulence case

근처 영역에서 두드러짐을 알 수 있다. 특히 난 류강도가 클 경우 선단와 끝단을 제외한 대부분 의 영역에서 Sh가 700 정도로 매우 균일하였다. 그리고 난류강도가 작을 경우, 0.0 < sp/c < 0.2에 서 정체점으로부터 하류방향으로 이동함에 따라 Sh는 급격히 감소하다가 다시 증가하는 현상은 자유유동 난류강도의 증가에 의해 크게 둔화되었 다. 이와 같은 사실은 자유유동 고 난류강도가 압력면 변곡점 근처에서의 층류 박리를 완화하는 역할을 함을 의미한다. Fig. 4와 Fig. 5의 끝벽 근 처 Sh 분포를 살펴 보면, Fig. 5의 결과가 Fig. 4 에 비하여 Sh의 절대치가 더 작고, 그 분포도 균 일함을 확인할 수 있다. 이와 같은 현상은 자유 유동 난류강도의 증가가 압력면 쪽 선단 모서리 와류와 압력면 모서리와류를 크게 약화시킴을 의 미한다. 전체적으로 볼 때, 난류발생기가 설치된 경우의 Sh 분포는 z/s에는 거의 무관하고 s<sub>p</sub>/c에 만 의존하는 것이 큰 특징이다.

Fig. 6은 난류발생기가 설치되어 있지 않은 경 우(Case 2)의 흡입면 국소 Sherwood 수 Sh의 분 포를 나타내고, Fig. 7은 난류발생기가 설치된 경 우(Case 2)의 흡입면 국소 Sherwood 수 Sh의 분



Fig. 6 Contours of Sh on the suction surface in the low turbulence case



in the high turbulence case

를 나타낸다. 난류강도가 큰 경우의 결과를 난류 강도가 작은 경우(Fig. 6)와 비교해 보면 전체적 으로 정성적으로 비슷한 경향을 보여 주지만, 흡 입면 중간부(mid-chord)에서의 Sh의 구배는 크게 감소하였다. 미드스팬 근처에서의 Sh 데이터를 보면, 0.2 < s\_s/c < 0.7에서 Sh는 난류강도가 큰 경우의 값이 훨씬 크다. 이것은 난류강도가 작을 때 존재하는 층류 경계층이 자유유동의 난류강도 증가로 인해 그 두께가 크게 얇아졌기 때문이다. Fig. 6의 블레이드의 코드방향 중간부분 즉 0.7 < ss/c < 0.9에서 존재하였던 Sh의 큰 구배는 고 난류강도 하에서는 크게 완화되었다. 그 이유는 자유유동 고 난류강도가 경계층 두께를 감소시키 면서 경계층 유동을 안정화하여 층류에서 난류 경계층으로의 천이를 억제하기 때문이다. 이와는 달리 Fig. 6에서 난류경계층 유동영역에 해당하는 1.1 < ss/c < 1.4에서는 두 경우의 Sh 분포의 차이 가 그다지 심하지 않았다. 미드스팬 근처 뿐만 아니라 끝벽에 기까운 곳에서도 층류 경계층 영 역의 경계를 이루는 감싸고 있던 천이 영역에서 의 Sh 구배는(Fig. 6) 고 난류강도 하에서는 현 저히 감소하였다. 그러나 끝벽 근처에서 흡입면

쪽 선단 모서리와류, 흡입면 모서리와류, 통로와 류 등에 의해 영향을 받는 영역에서의 Sh 분포는 자유유동 난류강도가 증가하여도 거의 변화하지 않았다. 압력면에서의 결과와 비교해 볼 때, 자 유유동 난류강도에 의한 Sh의 변화가 흡입면 2차 원 유동 영역에서는 더 큰 반면에, 흡입면 3차원 유동 영역에서는 오히려 더 작게 나타났다.

### 4. 결 론

(1) 연소기 출구 레벨의 난류유동 하에서, 블레 이드 선단의 열부하는 증가하는 경향을 보이지만 그 하류 영역에서는 경계층 박리/재부착 및 경계 층 천이 현상이 완화되어 열부하의 구배가 현저 히 감소하였다.

(2) 일반적으로 흡입면과 압력면에 관계없이 경 계층 유동의 재부착 또는 천이가 일어나는 영역 을 제외한 나머지 대부분의 영역에서는 난류강도 가 큰 경우의 열부하가 난류강도가 작은 경우에 비하여 더 높게 나타났다.

(3) 자유유동 난류강도의 영향은 압력면에서 보 다 흡입면에서 훨씬 더 두드러지게 나타났다. 특 히 블레이드 흡입면 중간부(mid-chord)에서의 열 부하가 자유유동 난류강도의 변화에 가장 민감하 였다.

(4) 자유유동의 난류강도가 크게 증가하면, 압 력면-끝벽 모서리에서의 열(물질)전달이 크게 감 소하였다. 이와는 대조적으로 흡입면 3차원 유동 영역에서는 열(물질)전달이 자유유동 난류강도의 영향을 거의 받지 않았다. 그러나 본 연구의 물 질전달 분포로부터 자유유동 난류강도의 증가에 의해 끝벽 근처 3차원 와류가 약화되는 경향을 보임을 알 수 있었다.

### 참고문헌

- (1) Bayley, F. J., and Priddy, W. J., 1981, "Effects of Free-Stream Turbulence Intensity and Frequency on Heat Transfer to Turbine Blading," *ASME Journal of Engineering for Power*, Vol. 103, pp.  $60 \sim 64$ .
- (2) Chen, P. H., and Goldstein, R. J., 1992, "Convective Transport Phenomena on the Suction Surface of a Turbine Blade Including the Influence

of Secondary Flows Near the Endwall," *ASME Journal of Turbomachinery*, Vol. 114, pp.  $776 \sim 787$ .

- (3) Goldstein, R. J., Wang, H. P., and Jabbari, M. Y., 1995, "The Influence of Secondary Flows Near the Endwall and Boundary Layer Disturbance on Convective Transport From a Turbine Blade," *ASME Journal of Yurbomachinery*, Vol. 117, pp. 657~665.
- (4) Koutmos, P. and McGuirk, J. J., 1989, "Isothermal Flow in a Gas Turbine Combustor - A Bench mark Experimental Study," *Experiments in Fluids*, Vol. 7, pp. 344~354.
- (5) Wang, H. P., Goldstein, R. J., and Olson, S. J., 1999, "Effect of High Free-Stream Turbulence With Large Length Scale on Bade Heat/Mass Transfer," ASME *Journal of Turbomachinery*, Vol. 121, pp. 217~224.
- (6) Lee, S, W., Jun, S. B., Park, B. K., and Lee, J. S., 2001, "Effects of High Free-Stream Turbulence on the Near-Wall Flow and Heat/Mass Transfer on the Endwall of a Linear Turbine Rotor Cascade," accepted for publication in the ASME *Journal of Turbomachinery*, ASME Paper No. 02-GT-30187.
- (7) Ames, F. E. and Moffat, R. J., 1990, "heat Transfer With High Intensity, Large Scale Turbulence: The Flat Plate Turbulent Boundary Layer and the Cylindrical Stagnation Point," NASA Report No. HMT-44 Dept. of Mech. Engrg., Stanford University.
- (8) Chung, J. T. and Simmon, T. W., 1993, "Effectiveness of the Gas Turbine Endwall Fences in Secondary Flow Control at Elevated Freestream Turbulence Levels," ASME Paper No. 93-GT-51.
- (9) Camp, T. R. and Shin, H. W., 1995,
  "Turbulence Intensity and Length Scale Measurements in Multi-stage Compressors," *ASME Journal of Turbomachinery*, Vol. 117, pp. 38~46.
- (10) Goldstein, R. J. and Cho, H. H., 1995, "A Review of Mass Transfer Measurements Using Naphthalene Sublimation," *Experimental Thermal and Fluid Science*, Vol. 10, pp. 416~434.