• Title/Summary/Keyword: Boundary Layer

Search Result 2,604, Processing Time 0.031 seconds

Simulated Annealing Algorithm for Two Layer Location Registration and Paging Areas in the Mobile Communication Systems (이동통신망의 이중계층 위치 및 페이징 영역 결정을 위한 시뮬레이티드 어닐링 알고리듬)

  • Paik, Chun-hyun;Chung, Yong-joo;Kim, Hu-gon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.4
    • /
    • pp.425-434
    • /
    • 2002
  • Mobility of service users makes location update and paging (L/P) procedures indispensable features in mobile communication networks. Importance of optimizing the configuration of L/P areas has been increased by the growth of L/P related signaling. In this study, we deal with the L/P configuration which an LA (Location Area) may contain multiple PAs (Paging Areas). Given the network topology, L/P related parameters, and traffics generated by each cell, is provided the problem of finding optimal LA/PA configuration minimizing the amount of L/P related signaling. The optimization problem is solved using a simulated annealing, and detailed computational results are conducted to capture the effects of mobility, call arrival patterns and boundary crossing rate on the LA and PA configurations.

An Adaptive Flux Observer of Induction Motors with Unknown Rotor Resistance (미지의 회전자 저항을 갖는 유도기의 적응 자속 관측자 설계)

  • Kim, Do-Woo;Yang, Hai-Won;Yoon, Ji-Sup;Park, Byung-Suk;Kim, Hong-Phil
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.438-441
    • /
    • 1998
  • In this paper, we proposes an adaptive flux observer to estimate initial values of rotor fluxes and unknown rotor resistance. The error system between the model of induction motor and a proposed observer is devided as a fast subsystem and a slow one by a singular perturbation system. The fast subsystem is exponentially convergent on a boundary-layer. And the overall error system is reduced to a quasi-steady-state system. The adaptive law for an unknown rotor resistance is designed to stabilize the approximate error system. As computer simulation results show, the proposed adaptive flux observer estimates fast initial values of rotor fluxes and unknown rotor resistance.

  • PDF

Influence of Unsteady Wake on Flow Characteristics and Heat Transfer from Linear Turbine Cascade (비정상후류가 선형터빈익렬의 유동 특성 및 익혀의 열전달에 미치는 영향에 관한 연구)

  • Yoon, Soon-Hyun;Sim, Jae-Kyung;Lee, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.713-716
    • /
    • 1998
  • To examine the influence of unsteady wake on the flow and heat transfer characteristics, an experiment has been conducted in a four-vane linear cascade. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress were measured using hot wire anemometer, and to measure the convective heat transfer coefficients on the blade surfaces liquid crystal/gold film Intrex technique was used. The disturbance by the unsteady wake is characterized by the unresolved unsteadiness. The unsteady wake enhances the turbulent motion of flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the suction surface increase with increasing unresolved unsteadiness.

  • PDF

BLDC Motor Position Control by Variable Structure Control with Evolution Strategy (Evolution Strategy를 이용한 가변구조제어기의 BLDC motor 위치제어)

  • Kim, Hyun-Sik;Park, Jin-Hyun;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.655-657
    • /
    • 1995
  • Variable Structure Controller is well known to be a robust controller. Recently, Evolution Strategy is used as a effective search algorithm. In this paper, we propose a Variable Structure Controller combined with Evolution Strategy. Evolution Strategy is used to estimate the unknown parameters, the control gain and the thickness of saturation function boundary layer of Variable Structure Controller. From the experiment, we found the proposed Variable Structure Controller shows accurate tracking ability and robust performance in the BLOC motor position control system.

  • PDF

An Analysis of Seismic Wave Propagation by Using the Fourier Method (Fourier 방법을 이용한 지진파 전달해석)

  • 김현실
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.399-406
    • /
    • 1998
  • Transient acoustic and elastic wave propagation in inhomogeneous media are studied by using the Fourier method. To verify the proposed numerical scheme, several examples having analytic solutions are considered, where two different semi-infinite media are in contact along a plane boundary. The comparisons of numerical results by the Fourier method and analytic solutions show good agreements. In addition, the Fourier method is applied to a layered half-plane, in which an elastic semi-infinite medium is covered by an elastic layer of finite thickness. It is showed how to derive the analytic solutions by using the Cagniard-de Hoop method. The numerical solutions are in excellent agreements with analytic results.

  • PDF

Determination of the Position of the Airspeed Probe Using CFD (전산유동해석에 의한 비행선 풍속계 설치 위치 선정)

  • Ok Honam;Chang Byeong-Hee;Lee Yung-Gyo;Oh Soo-Hun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.164-170
    • /
    • 2002
  • Numerical analysis of the flowfield around a 50-meter class airship is performed to determine the optimal position for the airspeed probe installation. The turbulent flow around the hull with gondola is analyzed to examine the characteristics of the data measured by the probe attached to the gondola, and they turned out to show the nonlinear relation between the freestream and measured angles of attack and be influenced by the Reynolds number. New position of the hull nose was proposed and the effect of various factors on the flowfield around the nose was also examined. The analysis with a panel method showed that the effect of empennage was negligible, and the effect of gondola and boundary layer thickness had also little impact. It was shown that the freestream angle of attack would be the only independent variable for the probe position around the hull nose in constructing the calibration matrix.

  • PDF

Numerical Analysis for the Performance of an Axial-flow Compressor with Three-Dimensional Viscous Effect (삼차원 점성 효과를 고려한 축류 압축기의 성능에 대한 수치해석)

  • Han Y. J.;Kim K. Y.;Ko S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.182-187
    • /
    • 2003
  • Numerical analysis of three-dimensional vicous flow is used to compute the design speed operating line of a transonic axial-flow compressor. The Navier-Stokes equation was solved by an explicit finite-difference numerical scheme and the Baldwin-Lomax turbulence model was applied. A spatially-varying time-step and an implicit residual smoothing were used to improve convergence. Two-stage axial compressor of a turboshaft engine developed KARI was chosen for the analysis. Numerical results show reasonably good agreements with experimental measurements made by KARI. Numerical solutions indicate that there exist a strong shock-boundary layer interaction and a subsequent large flow separation. It is also observed that the shock is moved ahead of the blade passage at near-stall condition.

  • PDF

Accurate Computations for Multi-dimensional flows : Spatial Discretization (다차원 유동의 정확한 수치해석 : 공간 차분법)

  • Kim Kyu Hong;Kim Chongam;Rho Oh-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.5-10
    • /
    • 2003
  • In order to reduce the excessive numerical dissipation, the new spatial discretization scheme is introduced. The present method in this paper has the formula that has an additional procedure of defining transferred properties at a cell-interface, based on AUSMPW+. The newly defined transferred property could eliminate numerical dissipation effectively in non-flow aligned grid system. In addition, the present method guarantees the monotonic characteristic in capturing a discontinuity. Through a stationary or moving contact discontinuity and a stationary or moving shock discontinuity, a vortex discontinuity and shock wave/ boundary layer interaction, it is verified that the accuracy of the present method is improved.

  • PDF

A COMPUTATIONAL STUDY ON THE CHARACTERISTICS OF FLOWFIELDS IN MICRONOZZLES (초소형 노즐 유동장에 관한 수치적 연구)

  • Seo, J.H.;Cho, H.G.;Lee, D.H.;Jung, S.C.;Myong, R.S.;Huh, H.I.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.38-43
    • /
    • 2007
  • Owing to the rapid progress in manufacturing technology of microscale devices, there are active research works in developing microscale propulsion systems. In this study, gas flows in nozzles with size of milli and sub-millimeter are investigated by using a CFD code based on the Navier-Stokes equations. The prediction results were compared with theoretical results of quasi-one-dimensional nozzle flow and experiment data. In general, theoretical values agree very well with the CFD results. However, theoretical values begin to deviate from the CFD and experimental data for relatively small Reynolds numbers and the nozzle shape with rectangular cross section. The primary reason for this discrepancy is due to the existence of the thick boundary layer at the wall in low Reynolds flows.

An analytical method for free vibration analysis of functionally graded sandwich beams

  • Bouakkaz, K.;Hadji, L.;Zouatnia, N.;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.23 no.1
    • /
    • pp.59-73
    • /
    • 2016
  • In this paper, a hyperbolic shear deformation beam theory is developed for free vibration analysis of functionally graded (FG) sandwich beams. The theory account for higher-order variation of transverse shear strain through the depth of the beam and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. The material properties of the functionally graded sandwich beam are assumed to vary according to power law distribution of the volume fraction of the constituents. The core layer is still homogeneous and made of an isotropic material. Based on the present refined beam theory, the equations of motion are derived from Hamilton's principle. Navier type solution method was used to obtain frequencies. Illustrative examples are given to show the effects of varying gradients and thickness to length ratios on free vibration of functionally graded sandwich beams.