• Title/Summary/Keyword: Boundary Area

Search Result 1,822, Processing Time 0.033 seconds

Some general properties in the degenerate scale problem of antiplane elasticity or Laplace equation

  • Chen, Y.Z.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.695-701
    • /
    • 2017
  • This paper investigates some general properties in the degenerate scale problem of antiplane elasticity or Laplace equation. For a given configuration, the degenerate scale problem is solved by using conformal mapping technique, or by using the null field BIE (boundary integral equation) numerically. After solving the problem, we can define and evaluate the degenerate area which is defined by the area enclosed by the contour in the degenerate configuration. It is found that the degenerate area is an important parameter in the problem. After using the conformal mapping, the degenerate area can be easily evaluated. The degenerate area for many configurations, from triangle, quadrilles and N-gon configuration are evaluated numerically. Most properties studied can only be found by numerical computation. The investigated properties provide a deeper understanding for the degenerate scale problem.

Analytical Study on Stall Stagnation Boundaries in Axial-Flow Compressor and Duct Systems

  • Yamaguchi, Nobuyuki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.2
    • /
    • pp.56-74
    • /
    • 2013
  • Stall stagnations in the system of axial-flow compressors and ducts occur in transition from deep surge conditions to decayed or converged stall conditions. The present study is concerned with the boundaries between the deep surges and the stagnation stalls on the basis of analytical results by a code on surge transients analysis and simulation. The fundamental acoustical-geometrical stagnation boundaries were made clear from examinations of the results on a variety of duct configurations coupled with a nine-stage compressor and a single stage fan. The boundary was found to be formed by three parts, i.e., B- and A-boundaries, and an intermediate zone. The B-boundary occurs for the suction-duct having a length of about a quarter of the wave-length of the first resonance in the case of very short and fat plenum-type delivery duct. On the other hand, the A-boundary occurs for the long and narrow duct-type delivery flow-path having a length about a fifth of the wavelength and relatively small sectional area in the case of short and narrow suction ducts. In addition to this, the reduced surge-cycle frequencies with respect to the duct lengths are observed to have respective limiting values at the stagnation boundaries. The reduced frequency for the B-boundary is related with a limiting value of the Greitzer's B parameter. The tendency and the characteristic features of the related flow behaviors in the neighborhood of the boundaries were also made clearer.

전자총 히터(electron gun heater) 자동검사를 위한 머신비젼 알고리즘

  • 김인수;이문규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.58-67
    • /
    • 2000
  • Electron gun heaters are used to heat a cathode in video(TV) monitors. Major defects of the electron gun heaters include dimensional inaccuracy and pollution with dirty materials. In this paper, to save the labor and time being taken to inspect the heaters, a machine vision system is considered. For the system, a new algorithm is developed to measure the 9 different dimensions of each heater and to detect polluted defects. The algorithm consists of three stages. In the first stage, the center of the heater image is obtained and then its boundary detection is performed. For the efficient boundary detection, a mask called the sum mask is used. In the second stage of the algorithm, a set of fiducial points are determined on the boundary image. Finally, using the fiducial points specified dimensions are measured and the amount of polluted area is computed in the third stage. The performance of the algorithm is evaluated for a set of real specimens. The results indicate that measurements obtained by the algorithm satisfy the tolerance limits fur most of the dimensions and the algorithm detects the polluted defects successfully.

  • PDF

Reflection Seismology in the Southern Ayu Trough, a Slow-spreading Divergent Boundary

  • Hong, Jong-Kuk;Lee, Sang-Mook
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.189-196
    • /
    • 2002
  • A multichannel seismic survey was conducted in the southern Ayu Trough which is the only spreading boundary between the Philippine Sea and Caroline plates. The seismic system used in this study comprises of 2.46-l sleeve gun and a 12-channel streamer with a group interval of 6.25m. Migration technique was used to analyze seismic velocity, and poststack depth migration was applied to the stacked data. The sediment thickness obtained from the depth section tends to increase with distance from the spreading axis. Sedimentation rates are poorly constrainted in the study area. The apparent half-spreading rates estimated from the sediment thickness and sedimentation rate from DSDP hole on the caroline plate are 4.7mm/yr and 7.9mm/yr at $1^{\circ}24'N\;and\;0^{\circ}42'N$, respectively, which are fester than Previously suggested. On the basis of new oblique spreading geometry, the recalculated spreading rates are 5.4mm/yr and 9.1mm/yr at $1^{\circ}24'N\;and\;0^{\circ}42'N$, respectively. Seismic sections show that the topography is asymmetric across the Ayu Trough and the acoustic basement is rough. These features are consistent with the earlier suggestion that the Ayu Trough is a slow-spreading divergent boundary. A detailed examination of seismic profiles away from the axis shows that sediments can be divided into two layers which implies a possible change in the spreading rate anuor sedimentation condition during the formation of the trough.

A Study on the Registration and Reconstruction of the Land Boundary Location in Numerical Cadastre (수치지적에서 토지경계의 등록과 복원에 관한 연구)

  • 김욱남;박희주
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.9-15
    • /
    • 1998
  • Numerical cadastral surveying method has advantages of higher accuracy and less individual error than planetable surveying method if we consider the result of surveying at the same area. Now in the areas where they use numerical cadastral records, coordinate is the basis when the boundary location is registered in numerical cadastral re-cords or is reconstructed on land surface, and this coordinate represents simply the absolute locational relationship with respect to origin point. But when we register the cadastral boundary location in cadastral or reconstruct it on land, relative relationship with respect to traverse point is more advisable basis than absolute relationship with respect to orgin point. This study contributes to the numerical cadastral surveying by discussing the problems to be improved that the principle of coordinate based boundary location registration and reconstruction has.

  • PDF

Impact of boundary layer simulation on predicting radioactive pollutant dispersion: A case study for HANARO research reactor using the WRF-MMIF-CALPUFF modeling system

  • Lim, Kyo-Sun Sunny;Lim, Jong-Myung;Lee, Jiwoo;Shin, Hyeyum Hailey
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.244-252
    • /
    • 2021
  • Wind plays an important role in cases of unexpected radioactive pollutant dispersion, deciding distribution and concentration of the leaked substance. The accurate prediction of wind has been challenging in numerical weather prediction models, especially near the surface because of the complex interaction between turbulent flow and topographic effect. In this study, we investigated the characteristics of atmospheric dispersion of radioactive material (i.e. 137Cs) according to the simulated boundary layer around the HANARO research nuclear reactor in Korea using the Weather Research and Forecasting (WRF)-Mesoscale Model Interface (MMIF)-California Puff (CALPUFF) model system. We examined the impacts of orographic drag on wind field, stability calculation methods, and planetary boundary layer parameterizations on the dispersion of radioactive material under a radioactive leaking scenario. We found that inclusion of the orographic drag effect in the WRF model improved the wind prediction most significantly over the complex terrain area, leading the model system to estimate the radioactive concentration near the reactor more conservatively. We also emphasized the importance of the stability calculation method and employing the skillful boundary layer parameterization to ensure more accurate low atmospheric conditions, in order to simulate more feasible spatial distribution of the radioactive dispersion in leaking scenarios.

A Study on the Construction and Application of Administrative Boundary (행정경계 구축 및 활용방안에 관한 연구)

  • Choi Yun-Soo;Kwon Jay-Hyoun;Lee Im-Pyeong;Park Ji-Hye
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.201-208
    • /
    • 2006
  • Currently, 1/5,000 Digital Topographic Map covers the whole country with administrative boundary of Gu, while some region has already been constructed with 1/1,000 digital topographic map has legal boundary of Dong. Here, Dong in 1/1,000 scale represents the legal boundary which is used in the address most of time. Therefore, there is no administrative-Dong yet although it is very useful in various fields. In this study, we suggested a method to construct the administrative boundary extending to the level of Dong empirically. In addition, the practical application of the administrative boundary in GIS is discussed. Two methods are applied to construct the administrative boundary to the level of administration-Dong; using the edited cadastral map and the digital topographic map. When the edited cadastral map is used, some problems such as boundary discordance to superordinate administrative area is appeared. On the other hand, using digital topographic map showed simple construction processes and easy connection with other framework data. Therefore, it is recommended that the digital topographic map should be used in the construction of the administrative boundary. It would be useful as framework data in various industries and public operations.

Accuracy Assessment of Parcel Boundary Surveying with a Fixed-wing UAV versus Rotary-wing UAV (고정익 UAV와 회전익 UAV에 의한 농경지 필지경계 측량의 정확도 평가)

  • Sung, Sang Min;Lee, Jae One
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.535-544
    • /
    • 2017
  • UAVs (Unmanned Aerial Vehicle) are generally classified into fixed-wing and rotary-wing type, and both have very different flight characteristics each other during photographing. These can greatly effect on the quality of images and their productions. In this paper, the change of the camera rotation angle at the moment of photographing was compared and analyzed by calculating orientation angles of each image taken by both types of payload. Study materials were acquired at an altitude of 130m and 260m with fixed-wing, and at an altitude of 130m with rotary-wing UAV over an agricultural land. In addition, an accuracy comparison of boundary surveying methods between UAV photogrammetry and terrestrial cadastral surveying was conducted in two parcels of the study area. The study results are summarized as follows. The differences at rotation angles of images acquired with between two types of UAVs at the same flight height of 130m were significantly very large. On the other hand, the distance errors of parcel boundary surveying were not significant between them, but almost the same, about within ${\pm}0.075m$ in RMSE (Root Mean Square Error). The accuracy of boundary surveying with a fixed-wing UAV at 260m altitude was quite variable, $0.099{\sim}0.136m$ in RMSE. In addition, the error of area extracted from UAV-orthoimages was less than 0.2% compared with the results of the cadastral survey in the same two parcels used for the boundary surveying, In conclusion, UAV photogrammetry can be highly utilized in the field of cadastral surveying.

Recycling of Suspended Particulates by Atmospheric Boundary Depth and Coastal Circulation (대기경계층과 연안순환에 의한 부유입자의 재순환)

  • Choe, Hyo
    • Journal of Environmental Science International
    • /
    • v.13 no.8
    • /
    • pp.721-731
    • /
    • 2004
  • The dispersion of suspended particulates in the coastal complex terrain of mountain-inland basin (city)-sea, considering their recycling was investigated using three-dimensional non-hydrostatic numerical model and lagrangian particle model (or random walk model). Convective boundary layer under synoptic scale westerly wind is developed with a thickness of about I km over the ground in the west of the mountain, while a thickness of thermal internal boundary layer (TIBL) is only confined to less than 200m along the eastern slope of the mountain, below an easterly sea breeze circulation. At the mid of the eastern slop of the mountain, westerly wind confronts easterly sea breeze, which goes to the height of 1700 m above sea level and is finally eastward return flow toward the sea. At this time, particulates floated from the ground surface of the city to the top of TIBL go along the eastern slope of the mountain in the passage of sea breeze, being away the TIBL and reach near the top of the mountain. Then those particulates disperse eastward below the height of sea-breeze circulation and widely spread out over the coastal sea. Total suspended particulate concentration near the ground surface of the city is very low. On the other hand, nighttime radiative cooling produces a shallow nocturnal surface inversion layer (NSIL) of 200 m thickness over the inland surface, but relatively thin thickness less than 100m is found near the mountain surface. As synoptic scale westerly wind should be intensified under the association of mountain wind along the eastern slope of mountain to inland plain and further combine with land-breeze from inland plain toward sea, resulting in strong wind as internal gravity waves with a hydraulic jump motion bounding up to about 1km upper level in the atmosphere in the west of the city and becoming a eastward return flow. Simultaneously, wind near the eastern coastal side of the city was moderate. Since the downward strong wind penetrated into the city, the particulate matters floated near the top of the mountain in the day also moved down along the eastern slope of the mountain, reaching the. downtown and merging in the ground surface inside the NSIL with a maximum ground level concentration of total suspended particulates (TSP) at 0300 LST. Some of them were bounded up from the ground surface to the 1km upper level and the others were forward to the coastal sea surface, showing their dispersions from the coastal NSIL toward the propagation area of internal gravity waves. On the next day at 0600 LST and 0900 LST, the dispersed particulates into the coastal sea could return to the coastal inland area under the influence of sea breeze and the recycled particulates combine with emitted ones from the ground surface, resulting in relatively high TSP concentration. Later, they float again up to the thermal internal boundary layer, following sea breeze circulation.

A Study on Converting Cadastral Coordinate System into Global Coordinate System (지적좌표계의 세계좌표 변환 연구)

  • Park, Chun-Soo;Hong, Sung-Eon;Park, Jong-Oh;Jeong, Taek-Seung;Sung, Baek-Young
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.3
    • /
    • pp.105-114
    • /
    • 2010
  • This study considers and analyzes the position and area errors and the related problems through the experimental study of the converting process from the cadastral coordinate system to the global coordinate system. Also, based on the result, the points of improvement have been considered. According to the conversion of the coordinates in the study area, the standard deviations for the conversion of coordinates in regard to every parcel boundary point (478 points in total) have been calculated as X=0.0079m and Y=0.0153m respectively. It can be considered that such values are extremely excellent. Also, after analyzing the area errors, it has been found that there is a difference of $0.062m^2$ on average. Such a difference stays within the range of the allowable error tolerance specified by the current laws. Therefore, in regard to the limited area which is subject to the study, it can be concluded that the difference is not great in differences of the position or the area. As a result, the converting process into the global coordinate system is possible.