• Title/Summary/Keyword: Bouncing

Search Result 123, Processing Time 0.022 seconds

Impact-Response of Floor Construction Materials (바닥건축재료의 충결하중에 대한 반응)

  • Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.83-87
    • /
    • 1995
  • Impact-bouncing height of steel balls dropped from 1m height on various floor materials were measured to evaluate impact-bouncing characteristics depending on floor materials and the effect of these properties on walkability and fatigue of humanbody. Stone and tile finished concrete floor showed the highest bouncing height of around 70%, and soil showed the lowest bouncing height of around 3%. The second highest bouncing height was about 40% which corresponded to terazo finished concrete floor and about twice as high as the bouncing height on concrete floor without finishing. The impact-bouncing height could be lowered to 15~20% by using gum tile on concrete floor. Steel showed similar bouncing height to concrete floor, and wood-based materials showed the second lowest bouncing height next to soil. Among wood-based materials, hardwood species having higher specific gravities showed relatively high bouncing height of 8~24%, softwood species having low specific gravities showed relatively lower bouncing height of 5~18%, and wood composites showed bouncing height of 8~18%. Among all the materials used in this study, wood-based floor materials corresponded to the bouncing height of 10~15% which is considered to be best for humanbody. Surface painting on wood-based materials increased the bouncing height, and the number of bouncing of steel balls after dropping from 1m height increased as the bouncing height increased.

  • PDF

A spectral model for human bouncing loads

  • Jiecheng Xiong;Jun Chen
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.237-247
    • /
    • 2023
  • Fourier series-based models in the time domain are frequently established to represent individual bouncing loads, which neglects the stochastic property of human bouncing activity. A power spectral density (PSD) model in the frequency domain for individual bouncing loads is developed herein. An experiment was conducted on individual bouncing loads, resulting in 957 records linked to form long samples to achieve a fine frequency resolution. The Welch method was applied to the linked samples to obtain the experimental PSD, which was normalized by the bouncing frequency and the harmonic order. The energy, energy distribution center, and energy distribution shape of the experimental PSD were investigated to establish the PSD model. The proposed model was used to analyze structural vibration responses using stochastic vibration theory, which was verified via field measurements. It is believed that this framework can evaluate the vibration capacity of structures excited by bouncing crowds, such as concert halls and grandstands.

The Influence of Permanent Magnet on the Bouncing of Latching Relay (자기유지형 릴레이 바운싱의 영구자석 영향)

  • Ryu, Jae-Man;Choi, Sun-Ho;Huh, Chang-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.4
    • /
    • pp.41-47
    • /
    • 2013
  • The electrical relay in an essential part of the Smart Grid, Electrical Vehicle (EV) and LED lightning system. For these reasons, research of electrical relay is actively underway. In this paper, analyze of the relationship between the bouncing of relay contact and magnetic flux of permanent magnet. Experiment result, changes the bouncing numbers depending on the magnetic flux of the latching relay. And find the value of the magnetic flux that occurs to minimize the bouncing of the contacts. In additions, by the increasing the magnetic flux, unconditional bounce is not reduced. The bouncing number of latching relay is less than expected the armature relay for present results. Further experiments are need to prove it, bouncing on the armature relays.

Bouncing Phenomena of Micro-droplet Train in Inkjet Printing (잉크젯 프린팅에서 발생하는 연속 미소 액적의 바운싱 현상)

  • Ara Jo;Hyoungsoo Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.26-30
    • /
    • 2023
  • Interaction of a droplet and substrate is important to determine the coating and final deposition pattern in inkjet printing system. In particular, an accurate deposition of the droplet should be guaranteed for high-resolution patterning. In this study, we performed high-speed shadowgraph experiments on droplet train impact in inkjet system. From the high-speed images, we observed an unexpected bouncing phenomenon. We have found two factors affecting bouncing regime; the Weber number and the curvature of deposited droplet. Experimental results indicate that there is a critical curvature diameter of deposited droplet, which splits into bouncing and merging regime. From this result, we obtained a power-law behavior between the Weber number and the curvature. The understanding of bouncing phenomena helps to improve the accuracy and productivity of inkjet printing.

Analysis of the Bouncing Phenomenon due to the Deterioration of the Relay Contact (릴레이 접점 열화에 따른 바운싱 현상 분석)

  • Ryu, Jae-Man;Choi, Sun-Ho;Park, Ki-Hoon;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.6
    • /
    • pp.383-388
    • /
    • 2014
  • The relay used is gradually increased. Because it is possible to easily control the high voltage and current. Bounce phenomenon is generated in contact during operation relay. As the result, arc is generated at the contact, thereby shortening the contact lifetime. In this study, we analyzed the bouncing phenomenon due to deterioration. It can be seen from the experimental results, and it is minimized at about 100,000 times. Bouncing phenomenon to increase again after the minimization. Consequently, the bouncing related to contact weight and shape of contact surface.

Experimental Studies on Bouncing and Driving Control of a Robotic Vehicle for Entertainment and Transportation (운송 및 엔터테인먼트용 로봇차량의 바운스 및 주행제어 실험 연구)

  • Cho, Sung Taek;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.266-271
    • /
    • 2015
  • This paper presents the driving and bouncing control of a robotic vehicle for entertainment and transportation. The robotic vehicle is aimed to carry two passengers with a balancing mechanism by two wheels. To maximize the entertaining purpose, not only the balancing control performance but the bouncing control performance is implemented. Passengers can select different driving modes such as regular driving mode, balancing mode, and bouncing mode. Experimental studies of the balancing control performance as well as the bouncing control performance are conducted to see the feasibility as an entertainment robotic vehicle.

Numerical Study of Electrohydraulic Forming to Reduce the Bouncing in High Speed Forming Process (고속 성형 공정의 바운싱 현상을 줄이기 위한 액중 방전 성형의 해석적 연구)

  • Woo, M.A.;Noh, H.G.;Song, W.J.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.25 no.4
    • /
    • pp.261-267
    • /
    • 2016
  • High-speed forming process is the forming technology that deforms the blank in a very short time, with the strain rate of the blank above 1000 s−1. Among many high-speed forming processes, electromagnetic forming (EMF) employs the Lorentz force when deforms the blank. Because of the high strain rate, the formability of the blank can be improved. However, when the blank is formed into rather complex shapes, it is bounced from the die and the wrinkles are generated. Therefore, electrohydraulic forming (EHF) is suggested in this study to reduce the bouncing problem of the blank. EHF is a high-speed forming that uses high voltage discharge in liquid. The shockwave resulting from the electric discharge propagates to the blank and it deforms the blank into the die. In this study, two high-speed forming processes, EMF and EHF were compared numerically with trapezoidal middle block die. This comparison showed that EMF cannot deform the blank into the die because of the bouncing, while EHF can overcome the bouncing problem and deform the blank into the die shape successfully.

Vibration Behavior of a Rotating Brush Roll in Contact with a Solid Roll (강체롤과 접촉 회전하는 브러시롤의 진동 현상)

  • 허주호
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.499-509
    • /
    • 1997
  • During the process of oxide removal from work rolls in sheet metal manufacture, filamentary brushes frequently exhibit a bouncing or chatter behavior. The dynamics of this phenomenon is investigated through the development of expressions for the non-linear contact stiffness between the brush and the roll. With formulation of simple structural models, the time responses in the presence and absence of friction under random excitation are investigated. Possible solutions for the minimization or avoidance of this bouncing or chatter problem are also suggested.

  • PDF

Analysis of a cantilever bouncing against a stop according to Timoshenko beam theory

  • Tsai, Hsiang-Chuan;Wu, Ming-Kuen
    • Structural Engineering and Mechanics
    • /
    • v.5 no.3
    • /
    • pp.297-306
    • /
    • 1997
  • The bouncing of a cantilever with the free end pressed against a stop can create high-frequency vibration that the Bernoulli-Euler beam theory is inadequate to solve. An analytic procedure is presented using Timoshenko beam theory to obtain the non-linear response of a cantilever supported by an elastic stop with clearance at the free end. Through a numerical example, the bouncing behavior of the Timoshenko and Bernoulli-Euler beam models are compared and discussed.

NUMERICAL ANALYSIS OF THE IMPACTING AND SPREADING DYNAMICS OF THE ELLIPSOIDAL DROP ON THE PERFECT NON-WETTING SOLID SURFACE (완전 비습윤 고체 표면 위 타원형 액적의 충돌 및 퍼짐 거동에 대한 수치적 연구)

  • Yun, S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.90-95
    • /
    • 2016
  • Leidenfrost drops with ellipsoidal shaping can control the bouncing height by adjusting the aspect ratio(AR) of the shape at the moment of impact. In this work, we focus on the effect of the AR and the impact Weber number(We) on the non-axisymmetrical spreading dynamics of the drop, which plays an important role in the control of bouncing. To understand the impact dynamics, the numerical simulation is conducted for the ellipsoidal drop impact upon the perfect non-wetting solid surface by using volume of fluid method, which shows the characteristics of the spreading behavior in each principal axis. As the AR increases, the drop has a high degree of the alignment into one principal axis, which leads to the consequent suppression of bouncing height with shape oscillation. As the We increases, the maximum spreading diameters in the principal axes both increase whereas the contact time on the solid surface rarely depends on the impact velocity at the same AR. The comprehensive understanding of the ellipsoidal drop impact upon non-wetting surface will provide the way to control of drop deposition in applications, such as surface cleaning and spray cooling.