• Title/Summary/Keyword: Botulinum Neurotoxin Type A Gene

Search Result 6, Processing Time 0.022 seconds

Expression of Mouse Synaptobrevin (VAMP) Gene in E. coli and its Cleavage by the Clostridium botulinum type B Toxin (Synaptobrevin (VAMP)유전자의 대장균에서의 발현 및 Clostridium botulinum type B 독소에 의한 절단)

  • 정현호;양기혁;이상달;양규환
    • Toxicological Research
    • /
    • v.13 no.4
    • /
    • pp.417-421
    • /
    • 1997
  • Synaptobrevin is a kind of vesicle associated membrane proteins (VAMPs) which plays a secretary role in the neuronal synapse and was recently known as the biochemical target of botulinum neurotoxin type B. The structural gene of the synaptobrevin was cloned from mouse brain using RT-PCR technique and was seqrtenced. The deduced amino acid sequence showed that the synaptobrevin protein from mouse brain is exactly the same with that of the rat brain in the amino acid level. The synaptobrevin gene was subcloned into pET3a vector and expressed in E. coli. The molecular weight of the recombinant protein was 19 kDa as expected. Moreover, when the recombinant synaptobrevin protein was incubated with the native neurotoxin of Clostridium botulinum type B, it was cleaved by the toxin in a time dependent manner. This implies that the recombinant synaptobrevin protein and the native toxin are reacted in the same way as the native synaptobrevin did in the neuronal cells.

  • PDF

Determination of Neurotoxin Gene Expression in Clostridium botulinum Type A by Quantitative RT-PCR

  • Shin, Na-Ri;Shin, Ji-Hun;Chun, Jeong Hoon;Yoon, So-Yeon;Kim, Bong Su;Oh, Hee-Bok;Rhie, Gi-eun
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.336-342
    • /
    • 2006
  • Real time reverse transcription (RT)-PCR was used to quantify the expression of the botulinum neurotoxin type A (BoNT/A) gene (cntA) by normalization with the expression of 16S rRNA. The method were confirmed by monitoring the mRNA levels of cntA during growth in five type A strains. In all but one of the strains the expression of cntA mRNA was maximal in the late exponential phase, and approximately 35-fold greater than in the early exponential phase. The concentration of the extracellular BoNT/A complex detected by ELISA was highest in stationary phase. Sodium nitrite and sorbic acid completely inhibited growth at 20 ppm and $4mg\;ml^{-1}$, respectively. CntA expression became lower in proportion to the concentration of sorbic acid, and this reduction was confirmed by mouse bioassay. Our results show that real time RT-PCR can be used to quantify levels of C. botulinum type A neurotoxin transcripts and to assess the effects of food additives on botulinal risk.

Effects of Minor Arginyl tRNA and Isoleucyl tRNA on the Expression of Clostridium botulinum Neurotoxin Light Chain in Escherichia coli

  • Kim, Jin-Sook;Seong, Hye-Young;Kim, Mi-Wha;Ku, Jong-Seo;Choi, Soon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.287-291
    • /
    • 2003
  • Botulinum neurotoxin type A (BONT/A) is an extremely potent toxin, which is produced by Clostridium botulinum. The light chain of this protein (BONT/A LC), which is known as a zinc endopeptidase, cleaves SNAP-25 involved in the exocytosis process. In this work, the expression of recombinant BoNT/A LC in E. coli is described. The BONT/A LC gene of C. botulinum contains a high frequency of the arginine AGA and isoleucine ATA codons that are rarely used in genes of E. coli, hampering the translation of recombinant protein. The argD and ilex tRNA genes were cloned into pACYC184 vector, resulting in pAAD131X plasmid. The translational stress of the toxin gene related to codon bias was reversed by fupplernentation of the AGA arginyl tRNA of T4 phage and AUA isoleucyl tRNA of E. coli. This system may be applicable for the expression of a variety of AT-rich heterologous genes in E. coli.

Effect of Adjuvants on Antibody Titer of Synthetic Recombinant Light Chain of Botulinum Neurotoxin Type B and its Diagnostic Potential for Botulism

  • Jain, Swati;Ponmariappan, S.;Kumar, Om;Singh, Lokendra
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.7
    • /
    • pp.719-727
    • /
    • 2011
  • Botulism is a neuroparalytic disease caused by Clostridium botulinum, which produces seven (A-G) antigenically diverse neurotoxins (BoNTs). BoNTs are the most poisonous substances known to humans, with a median lethal dose ($LD_{50}$) of approximately 1 ng/kg of body weight. Owing to their extreme potency and lethality, they have the potential to be used as a bioterrorism agent. The mouse bioassay is the gold standard for the detection of botulinum neurotoxins; however, it requires at least 3-4 days for completion. Attempts have been made to develop an ELISA-based detection system, which is potentially an easier and more rapid method of botulinum neurotoxin detection. The present study was designed using a synthetic gene approach. The synthetic gene encoding the catalytic domain of BoNT serotype B from amino acids 1-450 was constructed with PCR overlapping primers (BoNT/B LC), cloned in a pQE30 UA vector, and expressed in an E. coli M15 host system. Recombinant protein production was optimized at 0.5 mM IPTG final concentration, 4 h post induction, resulting in a maximum yield of recombinant proteins. The immunogenic nature of the recombinant BoNT/B LC protein was evaluated by ELISA. Antibodies were raised in BALB/c mice using various adjuvants. A significant rise in antibody titer (p<0.05) was observed in the Alum group, followed by the Titermax Classic group, Freund's adjuvant, and the Titermax Gold group. These developed high-titer antibodies may prove useful for the detection of botulinum neurotoxins in food and clinical samples.

Development of Enrichment Semi-nested PCR for Clostridium botulinum types A, B, E, and F and Its Application to Korean Environmental Samples

  • Shin, Na-Ri;Yoon, So-Yeon;Shin, Ji-Hun;Kim, Yun Jeong;Rhie, Gi-eun;Kim, Bong Su;Seong, Won Keun;Oh, Hee-Bok
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.329-337
    • /
    • 2007
  • An enrichment semi-nested PCR procedure was developed for detection of Clostridium botulinum types A, B, E, and F. It was applied to sediment samples to examine the prevalence of C. botulinum in the Korean environment. The first pair of primers for the semi-nested PCR was designed using a region shared by the types A, B, E, and F neurotoxin gene sequences, and the second round employed four nested primers complementary to the BoNT/A, /B, /E, and /F encoding genes for simultaneous detection of the four serotypes. Positive results were obtained from the PCR analysis of five of 44 sediments (11%) collected from Yeong-am Lake in Korea; all were identified as deriving from type B neurotoxin (bontb) genes. Two of the C. botulinum type B organisms were isolated, and their bontb genes sequenced. The deduced amino acid sequences of BoNT/B showed 99.5 and 99.8% identity with the amino acid sequence of accession no. AB084152. Our data suggest that semi-nested PCR is a useful tool for detecting C. botulinum in sediments, and renders it practicable to conduct environmental surveys.

Expression, Purification and Transduction of PEP-1-Botulinum Neurotoxin Type A (PEP-1-BoNT/A) into Skin

  • Kim, Dae-Won;Kim, So-Young;An, Jae-Jin;Lee, Sun-Hwa;Jang, Sang-Ho;Won, Moo-Ho;Kang, Tae-Cheon;Chung, Kwang-Hoe;Jung, Hyun-Ho;Cho, Sung-Woo;Choi, Jin-Hi;Park, Jin-Seu;Eum, Won-Sik;Choi, Soo-Young
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.642-647
    • /
    • 2006
  • Botulinum neurotoxin A (BoNT/A) has been used therapeutically to treat muscular hypercontractions and sudomotor hyperactivity and it has been reported that BoNT/A might have analgesic properties in headache. PEP-1 peptide is a known carrier peptide that delivers fulll-ength native proteins in vitro and in vivo. In this study, a BoNT/A gene were fused with PEP-1 peptide in a bacterial expression vector to produce a genetic in-frame PEP-1-BoNT/A fusion protein. The expressed and purified PEP-1-BoNT/A fusion proteins were efficiently transduced into cells in a time- and dose-dependent manner when added exogenously in a culture medium. In addition, immuno-histochemical analysis revealed that PEP-1-BoNT/A fusion protein efficiently penetrated into the epidermis as well as the dermis of the subcutaneous layer, when sprayed on mice skin. These results suggest that PEP-1-BoNT/A fusion protein provide an efficient strategy for therapeutic delivery in various human diseases related to this protein.