Browse > Article
http://dx.doi.org/10.4014/jmb.1010.10047

Effect of Adjuvants on Antibody Titer of Synthetic Recombinant Light Chain of Botulinum Neurotoxin Type B and its Diagnostic Potential for Botulism  

Jain, Swati (Biotechnology Division, Defence Research and Development Establishment)
Ponmariappan, S. (Biotechnology Division, Defence Research and Development Establishment)
Kumar, Om (Biotechnology Division, Defence Research and Development Establishment)
Singh, Lokendra (Biotechnology Division, Defence Research and Development Establishment)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.7, 2011 , pp. 719-727 More about this Journal
Abstract
Botulism is a neuroparalytic disease caused by Clostridium botulinum, which produces seven (A-G) antigenically diverse neurotoxins (BoNTs). BoNTs are the most poisonous substances known to humans, with a median lethal dose ($LD_{50}$) of approximately 1 ng/kg of body weight. Owing to their extreme potency and lethality, they have the potential to be used as a bioterrorism agent. The mouse bioassay is the gold standard for the detection of botulinum neurotoxins; however, it requires at least 3-4 days for completion. Attempts have been made to develop an ELISA-based detection system, which is potentially an easier and more rapid method of botulinum neurotoxin detection. The present study was designed using a synthetic gene approach. The synthetic gene encoding the catalytic domain of BoNT serotype B from amino acids 1-450 was constructed with PCR overlapping primers (BoNT/B LC), cloned in a pQE30 UA vector, and expressed in an E. coli M15 host system. Recombinant protein production was optimized at 0.5 mM IPTG final concentration, 4 h post induction, resulting in a maximum yield of recombinant proteins. The immunogenic nature of the recombinant BoNT/B LC protein was evaluated by ELISA. Antibodies were raised in BALB/c mice using various adjuvants. A significant rise in antibody titer (p<0.05) was observed in the Alum group, followed by the Titermax Classic group, Freund's adjuvant, and the Titermax Gold group. These developed high-titer antibodies may prove useful for the detection of botulinum neurotoxins in food and clinical samples.
Keywords
Botulism; BoNT/B LC; synthetic gene; antibody; ELISA; adjuvants;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Agarwal, A. K., A. Goel, A. Kohli, A. Rohtagi, and R. Kumar. 2004. Food-borne botulism. J. Assoc. Physicians India 52: 677-678.
2 Akdeniz, H., T. Buzgan, M. Tekin, H. Karsen, and M. K. Karahocagil. 2007. An outbreak of botulism in a family in Eastern Anatolia associated with eating suzme yoghurt buried under soil. Scand. J. Infect. Dis. 39: 108-114.   DOI   ScienceOn
3 Gill, D. M. 1982. Bacterial toxins: A table of lethal amounts. Microbiol. Rev. 46: 86-94.
4 Bomford, R. 1980. The comparative selectivity of adjuvants for humoral and cell-mediated immunity. I. Effect on the antibody response to bovine serum albumin and sheep red blood cells of Freund's incomplete and complete adjuvants, alhydrogel, Corynebacterium parvum, Bordetella pertussis, muramyl dipeptide and saponin. Clin. Exp. Immunol. 39: 426-434.
5 Cai, S., B. R. Singh, and S. Sharma. 2007. Botulism diagnostics: From clinical symptoms to in vitro assays. Crit. Rev. Microbiol. 33: 109-125.   DOI   ScienceOn
6 Dillon, P. J. and C. A. Rosen. 1990. A rapid method for the construction of synthetic genes using the polymerase chain reaction. Biotechniques 9: 298, 300.
7 Sobel, J., M. Malavet, and S. John. 2007. Outbreak of clinically mild botulism type E illness from home-salted fish in patients presenting with predominantly gastrointestinal symptoms. Clin. Infect. Dis. 45: e14-e16.   DOI
8 Arnon, S. S., R. Schechter, T. V. Inglesby, D. A. Henderson, J. G. Bartlett, M. S. Ascher, et al. 2001. Botulinum toxin as a biological weapon: Medical and public health management. J. Am. Med. Assoc. 285: 1059-1070.   DOI   ScienceOn
9 Sheth, A. N., P. Wiersma, D. Atrubin, V. Dubey, D. Zink, G. Skinner, et al. 2008. International outbreak of severe botulism with prolonged toxemia caused by commercial carrot juice. Clin. Infect. Dis. 47: 1245-1251.   DOI   ScienceOn
10 Singh, B. R. 2000. Intimate details of the most poisonous poison. Nat. Struct. Biol. 7: 617-619.   DOI   ScienceOn
11 Szilagyi, M., V. R. Rivera, D. Neal, G. A. Merrill, and M. A. Poli. 2000. Development of sensitive colorimetric capture ELISAs for Clostridium botulinum neurotoxin serotypes A and B. Toxicon 38: 381-389.   DOI   ScienceOn
12 Vaidyanathan, V. V., K. Yoshino, M. Jahnz, C. Dorries, S. Bade, S. Nauenburg, H. Niemann, and T. Binz. 1999. Proteolysis of SNAP-25 isoforms by botulinum neurotoxin types A, C, and E: Domains and amino acid residues controlling the formation of enzyme-substrate complexes and cleavage. J. Neurochem. 72: 327-337.   DOI
13 Vugia, D. J., S. R. Mase, B. Cole, J. Stiles, J. Rosenberg, L. Velasquez, A. Radner, and G. Inami. 2009. Botulism from drinking pruno. Emerg. Infect. Dis. 15: 69-71.   DOI
14 Schmidt, J. J. and K. A. Bostian. 1995. Proteolysis of synthetic peptides by type A botulinum neurotoxin. J. Protein Chem. 14: 703-708.   DOI   ScienceOn
15 Schiavo, G., F. Benfenati, B. Poulain, O. Rossetto, P. Polverino de Laureto, B. R. DasGupta, and C. Montecucco. 1992. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359: 832-835.   DOI   ScienceOn
16 Schiavo, G., O. Rossetto, S. Catsicas, P. Polverino de Laureto, B. R. DasGupta, F. Benfenati, and C. Montecucco. 1993. Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J. Biol. Chem. 268: 23784-23787.
17 Schiavo, G., C. C. Shone, O. Rossetto, F. C. Alexander, and C. Montecucco. 1993. Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. J. Biol. Chem. 268: 11516-11519.
18 Montecucco, C. and G. Schiavo. 1995. Structure and function of tetanus and botulinum neurotoxins. Q. Rev. Biophys. 28: 423-472.   DOI
19 Sharma, S. K., B. S. Eblen, R. L. Bull, D. H. Burr, and R. C. Whiting. 2005. Evaluation of lateral-flow Clostridium botulinum neurotoxin detection kits for food analysis. Appl. Environ. Microbiol. 71: 3935-3941.   DOI   ScienceOn
20 Montecucco, C. and G. Schiavo. 1994. Mechanism of action of tetanus and botulinum neurotoxins. Molec. Microbiol. 13: 1-8.   DOI   ScienceOn
21 Oguma, K., Y. Fujinaga, and K. Inoue. 1995. Structure and function of Clostridium botulinum toxins. Microbiol. Immunol. 39: 161-168.   DOI
22 Gilsdorf, J., N. Gul, and L. A. Smith. 2006. Expression, purification, and characterization of Clostridium botulinum type B light chain. Protein Expr. Purif. 46: 256-267.   DOI   ScienceOn
23 Rivera, V. R., F. J. Gamez, W. K. Keener, J. A. White, and M. A. Poli. 2006. Rapid detection of Clostridium botulinum toxins A, B, E, and F in clinical samples, selected food matrices, and buffer using paramagnetic bead-based electrochemiluminescence detection. Anal. Biochem. 353: 248-256.   DOI   ScienceOn
24 Rossetto, O., F. Deloye, B. Poulain, R. Pellizzari, G. Schiavo, and C. Montecucco. 1995. The metallo-proteinase activity of tetanus and botulism neurotoxins. J. Physiol. Paris 89: 43-50.   DOI   ScienceOn
25 Sakaguchi, G. 1982. Clostridium botulinum toxins. Pharmacol. Ther. 19: 165-194.   DOI   ScienceOn
26 Harandi, A. M., D. Medaglini, and R. J. Shattock. 2010. Vaccine adjuvants: A priority for vaccine research. Vaccine 28: 2363-2366.   DOI   ScienceOn
27 King, L. A., T. Niskanen, M. Junnikkala, E. Moilanen, M. Lindstrom, H. Korkeala, et al. 2009. Botulism and hot-smoked whitefish: A family cluster of type E botulism in France, September 2009. Euro. Surveill. 14(45): pii=19394.
28 Barash, J. R., T. W. Tang, and S. S. Arnon. 2005. First case of infant botulism caused by Clostridium baratii type F in California. J. Clin. Microbiol. 43: 4280-4282.   DOI   ScienceOn
29 Binz, T., J. Blasi, S. Yamasaki, A. Baumeister, E. Link, T. C. Sudhof, R. Jahn, and H. Niemann. 1994. Proteolysis of SNAP- 25 by types E and A botulinal neurotoxins. J. Biol. Chem. 269: 1617-1620.
30 Blasi, J., E. R. Chapman, E. Link, T. Binz, S. Yamasaki, P. De Camilli, T. C. Sudhof, H. Niemann, and R. Jahn. 1993. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature 365: 160-163.   DOI   ScienceOn
31 Lacy, D. B. and R. C. Stevens. 1999. Sequence homology and structural analysis of the clostridial neurotoxins. J. Mol. Biol. 291: 1091-1104.   DOI   ScienceOn
32 Doellgast, G. J., M. X. Triscott, G. A. Beard, J. D. Bottoms, T. Cheng, B. H. Roh, M. G. Roman, P. A. Hall, and J. E. Brown. 1993. Sensitive enzyme-linked immunosorbent assay for detection of Clostridium botulinum neurotoxins A, B, and E using signal amplification via enzyme-linked coagulation assay. J. Clin. Microbiol. 31: 2402-2409.
33 Blasi, J., E. R. Chapman, S. Yamasaki, T. Binz, H. Niemann, and R. Jahn. 1993. Botulinum neurotoxin C1 blocks neurotransmitter release by means of cleaving HPC-1/syntaxin. EMBO J. 12: 4821-4828.
34 Foran, P., G. W. Lawrence, C. C. Shone, K. A. Foster, and J. O. Dolly. 1996. Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: Correlation with its blockade of catecholamine release. Biochemistry 35: 2630-2636.   DOI   ScienceOn
35 Franz, D. R., P. B. Jahrling, A. M. Friedlander, D. J. McClain, D. L. Hoover, W. R. Bryne, J. A. Pavlin, G. W. Christopher, and E. M. Eitzen Jr. 1997. Clinical recognition and management of patients exposed to biological warfare agents. J. Am. Med. Assoc. 278: 399-411.   DOI   ScienceOn
36 Frean, J., L. Arntzen, J. van den Heever, and O. Perovic. 2004. Fatal type A botulism in South Africa, 2002. Trans. R. Soc. Trop. Med. Hyg. 98: 290-295.   DOI