• 제목/요약/키워드: Bottoming System

검색결과 23건 처리시간 0.023초

관류형 열회수 증기발생기와 증기터빈 시스템의 성능해석 (Performance Analysis of Once-through HRSG and Steam Turbine System)

  • 양진식;김동섭;노승탁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.872-877
    • /
    • 2001
  • This study analyzed the design performance of the bottoming system of combined cycle power plants adopting a single-pressure once-through heat recovery steam generator with reheat. A computer program was constructed and parametric analyses were carried out to present the criteria for determining the reheat pressure and the location of the starring point of the reheater in the HRSG. The performance of the bottoming system was presented for the range from high subcritical to supercritical pressures. It was founded that the power of the bottoming system can be as high as that of the present triple-pressure bottoming system even with a higher exhaust gas temperature. A requirement for this high performance is a proper arrangement of the reheater.

  • PDF

관류형 증기발생기를 사용한 복합발전용 초임계압 하부시스템의 성능 설계해석 (Performance Design Analysis of the Supercritical Pressure Bottoming System of Combined Cycle Power Plants Using Once-Through Steam Generator)

  • 양진식;김동섭;노승탁
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1370-1377
    • /
    • 2002
  • This study analyzed the design performance of the bottoming system of combined cycle power plants using a once-through heat recovery steam generator. For a parallel arrangement of the main heater and reheater, parametric analyses were carried out to present the criteria for determining the reheater pressure and the location of the starting point of the reheater in the HRSG. The performance of the bottoming system was presented fer a range from high subcritical to supercritical pressure. The steam turbine power is as high as that of conventional triple-pressure bottoming systems. The serial arrangement of heat exchangers with division of each heater into several segments can achieve similar power level.

복합화력발전 하부시스템의 성능설계해석 (Performance Design Analysis of the Bottoming System of Combined Cycle Power Plants)

  • 이봉렬;김동섭;노승탁;신흥태;전용준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.738-743
    • /
    • 2001
  • A computer program, capable of performing thermal design analysis of the triple pressure bottoming system of combined cycle power plants, was developed. The program is based on thermal analysis of the heat recovery steam generator and estimation of its size and steam turbine power. The program is applicable to various parametric analyses including optimized design calculation. This paper presents examples of analysis results for the effects of arrangement of heat exchanger units, steam pressures and deaerating sources on design performance indices such as steam turbine power and the size of heat recovery steam generator.

  • PDF

마이크로 가스터빈과 유기매체 랜킨사이클을 결합한 복합시스템의 설계 성능해석 (Design Performance Analysis of Micro Gas Turbine-Organic Rankine Cycle Combined System)

  • 이준희;김동섭
    • 설비공학논문집
    • /
    • 제17권6호
    • /
    • pp.536-543
    • /
    • 2005
  • This study analyzes the design performance of a combined system of a recuperated cycle micro gas turbine (MGT) and a bottoming organic Rankine cycle (ORC) adopting refrigerant (R123) as a working fluid. In contrast to the steam bottoming Rankine cycle, the ORC optimizes the combined system efficiency at a higher evaporating pressure. The ORC recovers much greater MGT exhaust heat than the steam Rankine cycle (much lower stack temperature), resulting in a greater bottoming cycle power and thus a higher combined system efficiency. The optimum MGT pressure ratio of the combined system is very close to the optimum pressure ratio of the MGT itself. The ORC's power amounts to about $25\%$ of MGT power. For the MGT turbine inlet temperature of $950^{\circ}C$ or higher, the combined system efficiency, based on shaft power, can be higher than $45\%$.

초임계 이산화탄소 사이클을 이용한 연료 재순환 MCFC의 폐열회수 (Waste heat recovery of recirculated MCFC using supercritical carbon dioxide power cycle)

  • 이재윤;안지호;김동섭
    • 플랜트 저널
    • /
    • 제15권2호
    • /
    • pp.42-45
    • /
    • 2019
  • 용융탄산염 연료전지는 폐열의 온도가 높아 하부 사이클을 구성하여 효율을 높일 수 있다. 이러한 목적으로 연료를 재순환하는 용융탄산염 연료전지에 하부 사이클로 증기 터빈 사이클을 적용한 선행 연구가 있었다. 본 연구는 하부 사이클을 증기 터빈 사이클에서 초임계 이산화탄소 사이클로 대체하는 것을 고려하였다. 그리고 출력을 비교하여 하부 사이클을 대체하는 것에 대한 검토를 하였다. 그 결과 현재 개발 단계의 초임계 이산화탄소 사이클의 출력은 증기 터빈 사이클보다 낮지만, 이론적으로 증기 터빈 사이클보다 출력이 더 커질 수 있음을 확인하였다. 만약 초임계 이산화탄소 사이클이 터빈의 등엔트로피 효율을 89%, 압축기의 등엔트로피 효율을 83%, 복열기의 유용도를 0.9의 수준으로 향상 시킨다면 증기 터빈 사이클과 동등한 출력을 낼 수 있다.

하부 사이클 추가에 의한 MCFC 시스템의 성능향상 (Enhancement of MCFC System Performance by Adding Bottoming Cycles)

  • 지승원;박성구;김동섭
    • 대한기계학회논문집B
    • /
    • 제34권10호
    • /
    • pp.907-916
    • /
    • 2010
  • 고온형 연료전지인 MCFC 발전시스템에 가스터빈, 유기매체 랜킨 사이클, 순산소 연소 사이클 등 다양한 하부 사이클을 추가한 통합시스템들의 성능을 비교 해석하였다. MCFC 시스템의 성능과 운전조건을 바탕으로 하여 각 추가 시스템의 주요 설계 변수 변화에 따른 통합시스템의 성능 변화를 해석하였고 이로부터 각 시스템의 최적 성능을 도출하였다. 각 시스템을 비교하여 MCFC와 최적의 결합을 나타내는 시스템을 분석하였는데, MCFC/OXY 시스템이 MCFC 단독 시스템에 비하여 가장 큰 출력 증가를 나타내었으며, MCFC/GT 시스템의 효율 증가가 가장 큰 것으로 나타났다.

2압, 증기분사 복합발전 사이클에 대한 성능해석 (A dual Pressure, Steam Injection Combined cycle Power Plant Performance Analysis)

  • 김수용;손호재;박무룡;윤의수
    • 연구논문집
    • /
    • 통권27호
    • /
    • pp.75-86
    • /
    • 1997
  • Combined cycle power plant is a system where a gas turbine or steam turbine is used to produce shaft power to drive a generator for producing electrical power and the steam from the HRSG is expanded in a steam turbine for additional shaft power. Combined cycle plant is a one from of cogeneration. The temperature of the exhaust gases from a gas turbine ranges from $400^\circC$ to $600^\circC$, and can be used effectively in a heat recovery steam generator to produce steam. Combined cycle can be classed as a "topping(gas turbine)" and a "bottoming(steam turbine)" cycle. The first cycle, to which most of the heat is supplied, is called the topping cycle. The wasted heat it produces is then utilized in a second process which operates at a lower temperature level and is therefore referred to as a "bottoming cycle". The combination of gas/steam turbine power plant managed to be accepted widely because, first, each individual system has already proven themselves in power plants with a single cycle, therefore, the development costs are low. Secondly, the air as a working medium is relatively non-problematic and inexpensive and can be used in gas turbines at an elevated temperature level over $1000^\circC$. The steam process uses water, which is likewise inexpensive and widely available, but better suited for the medium and low temperature ranges. It, therefore, is quite reasonable to use the steam process for the bottoming cycle. Only recently gas turbines attained inlet temperature that make it possible to design a highly efficient combined cycle. In the present study, performance analysis of a dual pressure combined-cycle power plant is carried out to investigate the influence of topping cycle to combined cycle performance.

  • PDF

Analysis of Design and Part Load Performance of Micro Gas Turbine/Organic Rankine Cycle Combined Systems

  • Lee, Joon-Hee;Kim, Tong-Seop
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1502-1513
    • /
    • 2006
  • This study analyzes the design and part load performance of a power generation system combining a micro gas turbine (MGT) and an organic Rankine cycle (ORC). Design performances of cycles adopting several different organic fluids are analyzed and compared with performance of the steam based cycle. All of the organic fluids recover greater MGT exhaust heat than the steam cycle (much lower stack temperature), but their bottoming cycle efficiencies are lower. R123 provides higher combined cycle efficiency than steam does. The efficiencies of the combined cycle with organic fluids are maximized when the turbine exhaust heat of the MGT is fully recovered at the MGT recuperator, whereas the efficiency of the combined cycle with steam shows an almost reverse trend. Since organic fluids have much higher density than steam, they allow more compact systems. The efficiency of the combined cycle, based on a MGT with 30 percent efficiency, can reach almost 40 percent. hlso, the part load operation of the combined system is analyzed. Two representative power control methods are considered and their performances are compared. The variable speed control of the MGT exhibits far better combined cycle part load efficiency than the fuel only control despite slightly lower bottoming cycle performance.

삼중압 열회수 증기발생기와 중기터빈 시스템의 열설계 해석 (Thermal Design Analysis of Triple-Pressure Heat Recovery Steam Generator and Steam Turbine Systems)

  • 김동섭;이봉렬;노승탁;신흥태;전용준
    • 대한기계학회논문집B
    • /
    • 제26권3호
    • /
    • pp.507-514
    • /
    • 2002
  • A computation routine, capable of performing thermal design analysis of the triple-pressure bottoming system (heat recovery steam generator and steam turbine) of combined cycle power plants, is developed. It is based on thermal analysis of the heat recovery steam generator and estimation of its size and steam turbine power. It can be applied to various parametric analyses including optimized design calculation. This paper presents analysis results for the effects on the design performance of heat exchanger arrangements at intermediate and high temperature parts as well as steam pressures. Also examined is the effect of steam sources for deaeration on design performance.

마그네슘 합금 판재의 온간 V-굽힘에서 소재의 변형 및 보토밍 공정의 효과 분석 (Study on the Deformation Characteristics of AZ31B Sheets in V-bending and Effect of Bottoming Process)

  • 김현우;유제형;이창환
    • 소성∙가공
    • /
    • 제27권3호
    • /
    • pp.139-144
    • /
    • 2018
  • Many studies have been conducted on the process of forming magnesium alloy sheets to reduce the body weights of vehicles. Magnesium has a lower specific gravity than steel and also has a higher specific strength. Mg alloy sheets have low formability and a lot of springback due to their limited ductility and low young's modulus. As the temperature increases, the yield strength of the material decreases. Warm forming increases the formability and minimizes the springback of a material by heating it and the die to reduce the required load at forming. In this study, the temperature of the AZ31B sheet was controlled in order to reduce springback and increase formability. However, as the temperature increased, the deformation characteristics of the material changed and the radius of curvature of the material increased. The load and springback amount required for forming were analyzed according to the temperature and the bottoming force in the bending deformation.