• Title/Summary/Keyword: Bottom shear stress

Search Result 169, Processing Time 0.023 seconds

Effects of Air Injections on the Resistance Reduction of a Semi-Planing Hull

  • Kim, Gyeong-Hwan;Kim, Hyo-chul
    • Journal of Hydrospace Technology
    • /
    • v.2 no.2
    • /
    • pp.44-56
    • /
    • 1996
  • The effects of the air on the reductions in resistance when supplied under the bottom of a semi-planing ship with a step are investigated in the present study. A 1.275m long FRP model is constructed and the pressure and viscous tangential stresses over the planing surface of the hull with and without air supply are measured through measuring holes carefully selected at the towing tank of Seoul National University. Locations of holes most suitable for air injection are surveyed in front of the planing surface of the model with careful examinations of the limiting streamlines and pressure distributions measured without air supply. At those locations, found to be just front of the step, air has been supplied into a wake region to form an air filled cavity of fixed type. Flow rates and pressure of the supplied air as well as the local pressure and shear stress distributions on the hull surface are measured to understand the physics involved as well as to determine the conditions most effective in resistance reduction at the design speed. It has been found that total resistance of the stepped semi-planing hull can be considerably reduced if an air cavity generated by an adequate air injection at the bottom of the hull near the step. After the cavity optimized at the given speed, air bubbles also have been generated right behind the point where dividing streamlines re-attach to further reduce the frictional resistance but found to be not so effective as the air cavity in resistance reductions.

  • PDF

Restrained Effect of End Plate on Plane Strain Test Evaluated by Digital Image Correlation Method (디지털 이미지 코릴레이션 기법으로 평가한 평면변형률 시험의 단부 구속 효과)

  • Jang, Eui-Ryong;Choo, Yoon-Sik;Lee, Won-Taeg;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.22-33
    • /
    • 2008
  • The plane strain test has been used widely in order to examine the stress-strain relation and failure behavior. Its advantages are more realistic simulation of deformation and failure behaviors of soils. Most plane strain tests have been carried out with restrained end plates due to difficulties in manufacturing the equipment with free end condition and also performing it. In this study, plane strain tests with/without bottom plate restraint were performed on Jumunjin-sand. The measurement of overall and local deformation was accomplished by digital image correlation technique as well as external LVDT. By applying digital image correlation method using two consecutive images captured through the transparent wall, local deformation behavior of various parts inside the specimen was estimated. From digital image analysis result, the restrained effect of end plate was examined about formation and development of shear band, and deformation mechanism of sand under plane strain condition.

  • PDF

The effectiveness of position of coupled beam with respect to the floor level

  • Yasser Abdal Shafey, Gamal;Lamiaa K., Idriss
    • Coupled systems mechanics
    • /
    • v.11 no.6
    • /
    • pp.557-586
    • /
    • 2022
  • In spite of extensive testing of the individual shear wall and the coupling beam (CB), numerical and experimental researches on the seismic behavior of CSW are insufficient. As far as we know, no previous research has investigated the affectations of position of CB regarding to the slab level (SL). So, the investigation aims to enhance an overarching framework to examine the consequence of connection positions between CB and SL. And, three cases have been created. One is composed of the floor slab (FS) at the top of the CB (FSTCB); the second is created with the FS within the panel depth (FSWCB), and the third is employed with the FS at the bottom of the CB (FSLCB). And, FEA is used to demonstrate the consequences of various CB positions with regard to the SL. Furthermore, the main measurements of structure response that have been investigated are deformation, shear, and moment in a coupled beam. Additionally, wall elements are used to simulate CB. In addition, ABAQUS software was used to figure out the strain distribution, shear stress for four stories to further understand the implications of slab position cases on the coupled beam rigidity. Overall, the findings show that the position of the rigid linkage among the CB and the FS can affect the behavior of the structures under seismic loads. For all structural heights (4, 8, 12 stories), the straining actions in FSWCB and FSLCB were less than those in FSTCB. And, the increases in displacement time history response for FSWCB are around 16.1-81.8%, 31.4-34.7%, and 17.5% of FSTCB.

Free vibration investigation of functionally graded plates with temperature-dependent properties resting on a viscoelastic foundation

  • Abdeldjebbar Tounsi;Adda Hadj Mostefa;Amina Attia;Abdelmoumen Anis Bousahla;Fouad Bourada;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.1-16
    • /
    • 2023
  • The free vibration of temperature-dependent functionally graded plates (FGPs) resting on a viscoelastic foundation is investigated in this paper using a newly developed simple first-order shear deformation theory (FSDT). Unlike other first order shear deformation (FSDT) theories, the proposed model contains only four variables' unknowns in which the transverse shear stress and strain follow a parabolic distribution along the plates' thickness, and they vanish at the top and bottom surfaces of the plate by considering a new shape function. For this reason, the present theory requires no shear correction factor. Linear steady-state thermal loads and power-law material properties are supposed to be graded across the plate's thickness. Uniform, linear, non-linear, and sinusoidal thermal rises are applied at the two surfaces for simply supported FGP. Hamilton's principle and Navier's approach are utilized to develop motion equations and analytical solutions. The developed theory shows progress in predicting the frequencies of temperature-dependent FGP. Numerical research is conducted to explain the effect of the power law index, temperature fields, and damping coefficient on the dynamic behavior of temperature-dependent FGPs. It can be concluded that the equation and transformation of the proposed model are as simple as the FSDT.

Numerical Modeling of Ebb-Dominant Tidal Flow in the Mokpo Coastal Zone (목포해역 낙조류 우세현상의 수치모의)

  • Jung, Tae-Sung;Choi, Jong-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.5
    • /
    • pp.333-343
    • /
    • 2010
  • In Mokpo coastal zone, the characteristics showing ebb-dominant tidal flow was confirmed by analysis of observed tide and tidal currents, Physical factors occurring ebb-dominant flow were reviewed. Influence of critical depth for drying, bottom shear stress, coastal reclamation, tidal amplitude, nonlinear tide, and eddy viscosity on the change of ebb-dominant flow was investigated by applying a two-dimensional circulation model. The simulation results for a variety of conditions showed that eddy viscosity and critical depth for drying does little or no impact on the generation of asymmetric flow. Strong bottom friction stress makes ebb-dominant flow clearly. Change of tidal flat into land swells ebb- dominant flow, and change of tidal flat into sea disappears ebb-dominant flow. Nonlinear tides play a decisive role in the generation of asymmetrical tidal flow. Non-linear tides should be included in the open boundary conditions of hydrodynamic modeling in the Mokpo coastal zone.

A Study on Analysis of J85 Engine V.G. Actuator Arm Shaft Crack

  • Hwang, Young-Ha;Son, Kyung-Sug;Kim, Tae-Gu
    • International Journal of Safety
    • /
    • v.8 no.1
    • /
    • pp.6-9
    • /
    • 2009
  • The crack in a J85 engine V.G. actuator arm shaft for a bell crank on the engine compressor was investigated. The crack was observed in twenty two shafts during the inspection of 238 shafts. The failure analysis of shaft cracks was performed by chemical composition analysis using ICP(Inductively Coupled Plasma) and by fracture surface and microstructure analysis using FE-SEM and optical microscope. The crack initiated from the top and bottom and propagated to the center along the grain boundaries. From the chemical composition analysis, the fractography of the fracture surface and the microstructure, it was found that the failure mechanism of the shafts is the inclusion-related intergranular decohesion crack. The inclusion was found out from MnS particle by EDS(Energy Dispersive Spectroscopy). The crack initiated MnS inclusion in the grain boundary and propagated with the increase of applied shear stress during long operation. In order to prevent the fracture, NDI(Nondestructive inspection) is needed periodically as recommended.

An Experimental Study on the Relocating Plastic Hinging Zones of Reinforced Concrete Beams Subjected to Cyclic Loads (반복하중을 받는 철근콘크리트 보의 소성힌지 이동에 관한 실험적 연구)

  • 김윤일;최창식;천영수;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.77-82
    • /
    • 1989
  • In this paper an experimental approach of the relocation plastic hinging zones of nine reinforced concrete exterior beam-column subassemblages under cyclic loads was tried. The main parameters of the testing program were location of the plastic hinge, difference of the special reinforcement, inclined or intermediate layers of longitudinal reinforcement, applied maximum shear stress. The conclusions presented herein are based on the limited texts conducted. Inclined or intermediate layers of longitudinal reinforcement and extra top and bottom steel in the beam over a specific legnth can be used to move the beam plastic hinging zone away from the column face. But, for the use of intermediate layers of longitudinal reinforcement, sheat reinforcement detail need further investigation.

  • PDF

Functional Requirements for VTS Decision Support System (VTS 의사결정지원 시스템 기능 요구 사항)

  • Lee, Sang-Woo;Lee, Byung-Gil
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.338-339
    • /
    • 2015
  • VTS Decision Support System can be defined a tool which assists VTS operator for decision-making at operational, planning and management level especially for the safety and efficiency of vessel traffic. This paper presents classification of VTS Decision Support System, detailed definition of alerts, and operational and functional requirements of VTS Decision Support System.

  • PDF

An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.671-689
    • /
    • 2018
  • Bending, buckling and free vibration responses of functionally graded (FG) higher-order beams resting on two parameter (Winkler-Pasternak) elastic foundation are studied using a new inverse hyperbolic beam theory. The material properties of the beam are graded along the thickness direction according to the power-law distribution. In the present theory, the axial displacement accounts for an inverse hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Hamilton's principle is employed to derive the governing equations of motion. Navier type analytical solutions are obtained for the bending, bucking and vibration problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio and foundation parameter on the displacements, stresses, critical buckling loads and frequencies. Numerical results by using parabolic beam theory of Reddy and first-order beam theory of Timoshenko are specially generated for comparison of present results and found in excellent agreement with each other.

Prediction of vibration response of functionally graded sandwich plates by zig-zag theory

  • Simmi, Gupta;H.D., Chalak
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.6
    • /
    • pp.507-523
    • /
    • 2022
  • This study is aimed to accurately predict the vibration response of two types of functionally graded sandwich plates, one with FGM core and another with FGM face sheets. The gradation in FGM layer is quantified by exponential method. An efficient zig-zag theory is used and the zigzag impacts are established via a linear unit Heaviside step function. The present theory fulfills interlaminar transverse stress continuity at the interface and zero condition at the top and bottom surfaces of the plate for transverse shear stresses. Nine-noded C-0 FE having 8DOF/node is utilized throughout analysis. The present model is free from the obligation of any penalty function or post-processing technique and hence is computationally efficient. Numerical results have been presented on the free vibration behavior of sandwich FGM for different end conditions, lamination schemes and layer orientations. The applicability of present model is confirmed by comparing with published results. Several new results are also specified, which will serve as the benchmark for future studies.