• Title/Summary/Keyword: Bottom debris

Search Result 52, Processing Time 0.028 seconds

The Impact of Bottom Debris on the Benthos in Fishing Grounds (어장의 저서생물에 미치는 해저 폐기물의 영향)

  • Kim, Jong-Hwa;Kim, Sam-Kon;Kim, Min-Seok;Kim, Yong-Bok
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.19 no.3
    • /
    • pp.491-501
    • /
    • 2007
  • This study deals with bottom debris and benthos which have obtained by using a beam trawler in Chinhae bay, Korea. The temperature and salinity didn't impact on the fish species and weights in the bay. But bottom debris is dominated on the precipitation into the bay. And it also was nearly very soiled owing to geographical condition of semi-enclosed bay. Moreover, all debris was not related on the quantitative variability of benthos. On the other hand, it was revealed to be reverse-correlative with fish species and positive-correlative with fish weights.

Study on relocation behavior of debris bed by improved bottom gas-injection experimental method

  • Teng, Chunming;Zhang, Bin;Shan, Jianqiang
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.111-120
    • /
    • 2021
  • During the core disruptive accident (CDA) of sodium-cooled fast reactor (SFR), the molten fuel and steel are solidified into debris particles, which form debris bed in the lower plenum. When the boiling occurs inside debris bed, the flow of coolant and vapor makes the debris particles relocated and the bed flattened, which called debris bed relocation. Because the thickness of debris bed has great influence on the cooling ability of fuel debris in low plenum, it's very necessary to evaluate the transient changes of the shape and thickness in relocation behavior for CDA simulation analysis. To simulate relocation behavior, a large number of debris bed relocation experiments were carried out by improved bottom gas-injection experimental method in this paper. The effects of different experimental factors on the relocation process were studied from the experiments. The experimental data were also used to further evaluate a semi-empirical onset model for predicting relocation.

Distribution of Marine Litters in the Sea Area between Busan and Jeju Island (부산-제주도사이 해역에서 해양폐기물 분포)

  • Kim, Min-Seok
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.22 no.3
    • /
    • pp.354-361
    • /
    • 2010
  • Author investigated the distribution of debris by a bottom trawler in the eight sea stations over the sea between Busan and Jeju island. 2,118 debris in number and 2,401.5kg in weight were collected. Most of collected debris were fishing gears which seemed to be lost or discarded during operations, and also most of the fishing gears was an eel pot. The densities of debris per hectare in number and weight were 1.21pieces and 2.639kg respectively. Station A was the highest densities compared to other stations, showing 2.7pisces and 4.9kg per hectare in number and weight. The closer to Busan it is, the higher density of debris can be collected.

A Study on Identification of Characteristics of Spatial Distribution for Submerged Marine Debris (해양침적쓰레기의 공간적 분포 특성 파악 연구)

  • Park, Jae-Moon;Kim, Dae-Hyun;Yoon, Hong-Joo;Seo, Won-Chan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.5
    • /
    • pp.539-544
    • /
    • 2016
  • The aim of this study is identifying characteristics of spatial distribution using submerged debris data on the bottom of sea ground. Marine debris is classified into floating and submerged debris. These are polluting marine environment, ecology and habitat by floating and submerged. Also it takes a lot of money when it is to process the waste flowing into the ocean. In this study, it is used data of submerged debris by side scan sonar on the bottom of sea ground in Pohang port. Submerged distribution map is made to identify spatial classified characteristics of SMD(submerged marine debris) using by position and weight per area of SMD.

Distortion of the Bottom Surface in Micro Cavity Machining Using MEDM (미세 캐비티 방전 가공에서 바닥면 형상 왜곡)

  • 임종훈;류시형;제성욱;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.191-197
    • /
    • 2003
  • As mechanical components are miniaturized, the demand on micro die and mold is increasing. Micro mechanical components usually have high hardness and good conductivity. So micro electrical discharge machining (MEDM) is an effective way to machine those components. In micro cavity fabrication using MEDM, it is observed that the bottom surface of cavity is distorted. Electric charges tend to be concentrated at the sharp edge. At the center of the bottom surface, debris can not be drawn off easily. These two phenomena make the bottom surface of the electrode and workpiece distort. As machining depth increases, the distorted shape of electrode approaches hemisphere. This process is affected by capacitance and the size of electrode. By using a smaller electrode than the desired cavity size and appropriate tool movement, bottom shape distortion can be prevented.

Distortion of the Bottom Surface in Micro Cavity Machining Using MEDM

  • Lim Jong Hoon;Je Sung Uk;Ryu Shi Hyoung;Chu Chong Nam
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.44-48
    • /
    • 2005
  • As mechanical components are miniaturized, the demands on micro die/mold are increasing. Micro mechanical components usually have high hardness and good conductivity. Micro electrical discharge machining (MEDM) can thus be an effective way to machine those components. In micro cavity fabrication using MEDM, it is observed that the bottom surface of the cavity is distorted. Electric charges tend to be concentrated at the sharp edge, and debris cannot be drawn off easily at the center of the bottom surface. These two phenomena make the bottom surface of electrode and workpiece distort. As machining depth increases, the distorted shape of the electrode approaches hemisphere. This process is affected by both capacitance and the size of electrode. By using a smaller electrode than the desired cavity size and appropriate tool movement, bottom shape distortion can be prevented.

Study on the Marine Debris on the Seabed in Chinhae Bay, Korea (진해만의 바다밑 쓰레기에 대한 조사연구)

  • Koo Bon-Sam;Kang Hun;Hur Sung-Hoi
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.4
    • /
    • pp.91-98
    • /
    • 2000
  • The present study is the first attempt involving quantification of the different types of debris found on the seabed of Chinhae Bay in the South Sea of Korea. Eleven cruises were undertaken to collect marine debris samples by bottom trawling from February in 1998 to January in 1999. The tows were conducted over a period of 60-90 min, and eight types of debris were counted: plastic, fishing gear, metallic objects, wood, rubber or leather, glass, textile and the others. Results are obtained based on the number and weight of the objects classified as per eight categories and station for a trawling period. The results of this study are that the number and weight of debris found per unit of swept area (1 hectare) were surveyed as 27.8(1,612 in total) and 3,130 g(193,820 g in total), and plastic and fishing gear have the most composition of marine debris by number, on the other hand, metallic objects and fishing gear have the most composition of marine debris by weight.

  • PDF

A Study on Analysis of Damages due to Debris Flow at Jecheon in 2009 (2009년 발생한 제천시의 토석류 피해분석에 관한 연구)

  • Yoo, Nam-Jae;Choi, Young-June;Lee, Cheol-Ju
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.95-101
    • /
    • 2010
  • This paper is results of case study on characteristics of debris flow occurred at Jecheon during a heavy rainfall in 2009. The site studied is the mountain area located at Palsong-ri Bongyang-op in Jecheon-si where serious damages due to debris flow were occurred by heavy rainfall during July 7 to July 16 in 2009. Intensity and duration of rainfall causing debris flow were analyzed on the basis of AWS data. Characteristics of debris flow such as initiation, transportation and deposition were investigated through field reconnaissance. The geological and topographical characteristics of slope where debris flow was triggered were figured out and characteristics of erosion on the bottom and sides of valley during transportation of debris flow were also investigated. The slope and boundary of valley where the debris flow started to be deposited were studied.

  • PDF

FEM Numerical Formulation for Debris Flow (토석류 유동해석을 위한 유한요소 수식화)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.55-65
    • /
    • 2014
  • Recent researches on debris flow is focused on understanding its movement mechanism and building a numerical simulator to predict its behavior. However, previous simulators emulating fluid-like debris flow have limitations in numerical stability, geometric modeling and application of various boundary conditions. In this study, depth integration is applied to continuity equation and force equilibrium for debris flow. Thickness of sediment, and average velocities in x and y flow direction are chosen for main variables in the analysis, which improve numerical stability in the area with zero thickness. Petrov-Galerkin formulation uses a discontinuous test function of the weighted matrix from DG scheme. Presented mechanical constitutive model combines fluid and granular behaviors for debris flow. Effects on slope angle, inducing debris height, and bottom friction resistance are investigated for a simple slope. Numerical results also show the effect of embankment at the bottom of the slope. Developed numerical simulator can assess various risk factors for the expected area of debris flow, and facilitate embankment design in order to minimize damage.

Experiments on Sedimentation of Particles in a Water Pool with Gas Inflow

  • Kim, Eunho;Jung, Woo Hyun;Park, Jin Ho;Park, Hyun Sun;Moriyama, Kiyofumi
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.457-469
    • /
    • 2016
  • During the late phase of severe accidents of light water reactors, a porous debris bed is expected to develop on the bottom of the flooded reactor cavity after breakup of the melt in water. The geometrical configuration, i.e., internal and external characteristics, of the debris bed is significant for the adequate assessment of the coolability of the relocated corium. The internal structure of a debris bed was investigated experimentally using the DAVINCI (Debris bed research Apparatus for Validation of the bubble-Induced Natural Convection effect Issue) test facility. Particle sedimentation under the influence of a two-phase natural convection flow due to the decay heat in the debris bed was simulated by dropping various sizes of particles into a water vessel with air bubble injection from the bottom. Settled particles were collected and sieved to obtain the particle mass, size distribution in the radial and axial positions, and the bed porosity and permeability. The experimental results showed that the center part of the particle bed tended to have larger particles than the peripheral area. For the axial distribution, the lower layer had a higher fraction of larger particles. As the sedimentation progressed, the size distribution in the upper layers can shift to larger sizes because of the higher vapor generation rate and stronger flow intensity.