• Title/Summary/Keyword: Boron based

Search Result 215, Processing Time 0.039 seconds

Charge Transport Properties of Boron/Nitrogen Binary Doped Graphene Nanoribbons: An ab Initio Study

  • Kim, Seong Sik;Kim, Han Seul;Kim, Hyo Seok;Kim, Yong Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.180.2-180.2
    • /
    • 2014
  • Opening a bandgap by forming graphene nanoribbons (GNRs) and tailoring their properties via doping is a promising direction to achieve graphene-based advanced electronic devices. Applying a first-principles computational approach combining density functional theory (DFT) and DFT-based non-equilibrium Green's function (NEGF) calculation, we herein study the structural, electronic, and charge transport properties of boron-nitrogen binary edge doped GNRs and show that it can achieve novel doping effects that are absent for the single B or N doping. For the armchair GNRs, we find that the B-N edge co-doping almost perfectly recovers the conductance of pristine GNRs. For the zigzag GNRs, it is found to support spatially and energetically spin-polarized currents in the absence of magnetic electrodes or external gate fields: The spin-up (spin-down) currents along the B-N undoped edge and in the valence (conduction) band edge region. This may lead to a novel scheme of graphene band engineering and benefit the design of graphene-based spintronic devices.

  • PDF

Research on the calculation method of sensitivity coefficients of reactor power to material density based on Monte Carlo perturbation theory

  • Wu Wang;Kaiwen Li;Yuchuan Guo;Conglong Jia;Zeguang Li;Kan Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4685-4694
    • /
    • 2023
  • The ability to calculate the material density sensitivity coefficients of power with respect to the material density has broad application prospects for accelerating Monte Carlo-Thermal Hydraulics iterations. The second-order material density sensitivity coefficients for the general Monte Carlo score have been derived based on the differential operator sampling method in this paper, and the calculation of the sensitivity coefficients of cell power scores with respect to the material density has been realized in continuous-energy Monte Carlo code RMC. Based on the power-density sensitivity coefficients, the sensitivity coefficients of power scores to some other physical quantities, such as power-boron concentration coefficients and power-temperature coefficients considering only the thermal expansion, were subsequently calculated. The effectiveness of the proposed method is demonstrated in the power-density coefficients problems of the pressurized water reactor (PWR) moderator and the heat pipe reactor (HPR) reflectors. The calculations were carried out using RMC and the ENDF/B-VII.1 neutron nuclear data. It is shown that the calculated sensitivity coefficients can be used to predict the power scores accurately over a wide range of boron concentration of the PWR moderator and a wide range of temperature of HPR reflectors.

First-principles Study of Graphene/Hexagonal Boron Nitride Stacked Layer with Intercalated Atoms

  • Sung, Dongchul;Kim, Gunn;Hong, Suklyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.185.2-185.2
    • /
    • 2014
  • We have studied the atomic and electronic structure of graphene nanoribbons (GNRs) on a hexagonal boron nitride (h-BN) sheet with intercalated atoms using first-principles calculations. The h-BN sheet is an insulator with the band gap about 6 eV and then it may a good candidate as a supporting dielectric substrate for graphene-based nanodevices. Especially, the h-BN sheet has the similar bond structure as graphene with a slightly longer lattice constant. For the computation, we use the Vienna ab initio simulation package (VASP). The generalized gradient approximation (GGA) in the form of the PBE-type parameterization is employed. The ions are described via the projector augmented wave potentials, and the cutoff energy for the plane-wave basis is set to 400 eV. To include weak van der Waals (vdW) interactions, we adopt the Grimme's DFT-D2 vdW correction based on a semi-empirical GGA-type theory. Our calculations reveal that the localized states appear at the zigzag edge of the GNR on the h-BN sheet due to the flat band of the zigzag edge at the Fermi level and the localized states rapidly decay into the bulk. The open-edged graphene with a large corrugation allows some space between graphene and h-BN sheet. Therefore, atoms or molecules can be intercalated between them. We have considered various types of atoms for intercalation. The atoms are initially placed at the edge of the GNR or inserted in between GNR and h-BN sheet to find the effect of intercalated atoms on the atomic and electronic structure of graphene. We find that the impurity atoms at the edge of GNR are more stable than in between GNR and h-BN sheet for all cases considered. The nickel atom has the lowest energy difference of ~0.2 eV, which means that it is relatively easy to intercalate the Ni atom in this structure. Finally, the magnetic properties of intercalated atoms between GNR and h-BN sheet are investigated.

  • PDF

Boron-doped Diamond Thin Film for Electrochemical Biosensors

  • Jianzhong-Zhu;Lu-Deren
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.156-158
    • /
    • 1998
  • This paper describes the preparation of boron-doped polycrystalline diamond thin film whose electrical resitivity is lower than $10^{-1}\Omega$cm. The 1$\times$1$\textrm{mm}^2$ microelectrodes, its conducting line with 0.2mm wide and 0.5$\times$0.5$\textrm{mm}^2$ pads was patterned by reactive ion beam etching. A glucose microsensor based on diamond film microelectrode and pyramidal containment produced on silicon by anisotropic etching was developed. Its advantages are high sensitivity and high stability.

  • PDF

Development of physically based 3D computer simulation code TRICSI for ion implantation into crystalline silicon

  • Son, Myung-Sik;Lee, Jun-Ha;Hwang, Ho-Jung
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • A new three-dimensional (3D) Monte Carlo ion implantation simulator, TRICSI, has been developed to investigate 3D mask effects in the typical mask structure for ion implantation into crystalline silicon. We present the mask corner and mask size effects of implanted boron range profiles, and also show the calculated damage distributions by applying the modified Kinchin-Pease equation in the single-crystal silicon target. The simulator calculates accurately and efficiently the implanted-boron range profiles under the relatively large implanted area, using a newly developed search algorithm for the collision partner in the single-crystal silicon. All of the typical implant parameters such as dose, tilt and rotation angles, in addition to energy can be used for the 3D simulation of ion implantation.

Enhanced superconducting properties of MgB2 by doping the carbon quantum dots

  • K.C., Chung;S.H., Jang;Y.S., Oh;S.H., Kang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.55-58
    • /
    • 2022
  • Carbon-based doping to MgB2 superconductor is the simplest approach to enhance the critical current densities under magnetic fields. Carbon quantum dots is synthesized in this work as a carbon provider to MgB2 superconductors. Polyvinyl Pyrrolidone is pyrolyzed and dispersed in dimethylfomamide solvent as a dopant to the mixture of Mg and B powders. Doped MgB2 bulk samples clearly show the decrease of a-axis lattice constant, grain refinements, and broadening of FWHM of diffraction peaks compared to un-doped MgB2 possibly due to the carbon substitution and/or boron vacancy at the boron site in MgB2 lattice. Also, high-field Jc for the doped MgB2 is enhanced significantly with the crossover about 3 T at 5 & 20 K when increasing the doping of carbon quantum dots.

Atomic Force Microscopy (AFM) Tip based Nanoelectrode with Hydrogel Electrolyte and Application to Single-Nanoparticle Electrochemistry

  • Kyungsoon Park;Thanh Duc Dinh;Seongpil Hwang
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.261-267
    • /
    • 2024
  • An unconventional fabrication technique of nanoelectrode was developed using atomic force microscopy (AFM) and hydrogel. Until now, the precise control of electroactive area down to a few nm2 has always been an obstacle, which limits the wide application of nanoelectrodes. Here, the nanometer-sized contact between the boron-doped diamond (BDD) as conductive AFM tip and the agarose hydrogel as solid electrolyte was well governed by the feedback amplitude of oscillation in the non-contact mode of AFM. Consequently, this low-cost and feasible approach gives rise to new possibilities for the fabrication of nanoelectrodes. The electroactive area controlled by the set point of AFM was investigated by cyclic voltammetry (CV) of the ferrocenmethanol (FcMeOH) combined with quasi-solid agarose hydrogel as an electrolyte. Single copper (Cu) nanoparticle was deposited at the apex of the AFM tip using this platform whose electrocatalytic activity for nitrate reduction was then investigated by CV and Field Emission-Scanning Electron Microscopy (FE-SEM), respectively.

Nearly single crystal, few-layered hexagonal boron nitride films with centimeter size using reusable Ni(111)

  • Oh, Hongseok;Jo, Janghyun;Yoon, Hosang;Tchoe, Youngbin;Kim, Sung-Soo;Kim, Miyoung;Sohn, Byeong-Hyeok;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.286-286
    • /
    • 2016
  • Hexagonal boron nitride (hBN) is a dielectric insulator with a two-dimensional (2D) layered structure. It is an appealing substrate dielectric for many applications due to its favorable properties, such as a wide band gap energy, chemical inertness and high thermal conductivity[1]. Furthermore, its remarkable mechanical strength renders few-layered hBN a flexible and transparent substrate, ideal for next-generation electronics and optoelectronics in applications. However, the difficulty of preparing high quality large-area hBN films has hindered their widespread use. Generally, large-area hBN layers prepared by chemical vapor deposition (CVD) usually exhibit polycrystalline structures with a typical average grain size of several microns. It has been reported that grain boundaries or dislocations in hBN can degrade its electronic or mechanical properties. Accordingly, large-area single crystalline hBN layers are desired to fully realize the potential advantages of hBN in device applications. In this presentation, we report the growth and transfer of centimeter-sized, nearly single crystal hexagonal boron nitride (hBN) few-layer films using Ni(111) single crystal substrates. The hBN films were grown on Ni(111) substrates using atmospheric pressure chemical vapor deposition (APCVD). The grown films were transferred to arbitrary substrates via an electrochemical delamination technique, and remaining Ni(111) substrates were repeatedly re-used. The crystallinity of the grown films from the atomic to centimeter scale was confirmed based on transmission electron microscopy (TEM) and reflection high energy electron diffraction (RHEED). Careful study of the growth parameters was also carried out. Moreover, various characterizations confirmed that the grown films exhibited typical characteristics of hexagonal boron nitride layers over the entire area. Our results suggest that hBN can be widely used in various applications where large-area, high quality, and single crystalline 2D insulating layers are required.

  • PDF