• Title/Summary/Keyword: Boron Nitride

Search Result 251, Processing Time 0.032 seconds

Physical Adsorption of Nitrogen Gas on BN, Alumina, and Silica-Gel Powders

  • Cho, Hyun-Woo;Kim, Jung-Soo;Yoo, Eun-Ah;Ahn, Woon-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.4
    • /
    • pp.244-248
    • /
    • 1988
  • Multilayer adsorption isotherms of nitrogen on hexagonal boron nitride, ${\gamma}$-alumina, and silica-gel powders are determined at the liquid nitrogen temperature using a gravimetric adsorption apparatus. The volume (V) of the adsorbed gas are plotted against the statistical thickness(t) of the adsorbed layer, and the t-method area are calculated from the slope of these V-t plots to compare with the BET area. A number of universal adsorption isotherms and the Frenkel-Halsey-Hill equation are used one after another in calculating the statistical thickness. The appropriateness of the FHH equation as an universal adsorption isotherm is discussed finally.

An Optical Graphene-silicon Resonator Phase Shifter Suitable for Universal Linear Circuits

  • Liu, Changling;Wang, Jianping;Chen, Hongyao;Li, Zizheng
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.15-22
    • /
    • 2022
  • This paper describes the construction of a phase shifter with low loss and small volume. To construct it, we use the two graphene layers that are separated by a hexagonal boron nitride (hBN) and embedded in a silicon waveguide. The refractive index of the waveguide is adjusted by applying a bias voltage to the graphene sheet to create an optical phase shift. This waveguide is a compact device that only has a radius of 5 ㎛. It has a phase shift of 6π. In addition, the extinction ratio (ER) is 11.6 dB and the insertion loss (IL) is 0.031 dB. Due to its unique characteristics, this device has great potential in silicon on-chip optical interconnection and all-optical multiple-input multiple-output processing.

A Study on the Optimum Cutting Conditions of CBN Ball Endmill (CBN 볼 엔드밀의 최적 절삭조건에 관한 연구)

  • Choi, Sangwoo;Lee, Kiwoo;Lee, Jongchan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.157-163
    • /
    • 1997
  • The needs to machine hardened steels with high productivity and good sufrace integrity have been increased in the dies & molds industry. This paper presents some experimental results on the CBN ball endmilling for hardened tool steel. This investigation concerns on the effects of cutting fluids, cutting speed, and feed on the cutting performance such as cutting forces, tool wear, and surface finish. The wear of CBN ball endmill for each cutting conditions were also examined through the microscopic observation. It has been found that the higher cutting speeds with cutting fluids result in better cutting performance.

  • PDF

Effect of Alcohols on the Dry Etching of Sacrificial SiO2 in Supercritical CO2 (초임계 이산화탄소를 이용한 웨이퍼의 건식 식각에서 알콜 첨가제의 효과)

  • Kim, Do-Hoon;Jang, Myoung-Jae;Lim, Kwon-Taek
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.280-286
    • /
    • 2012
  • The dry etching of sacrificial $SiO_2$ was performed in supercritical carbon dioxide. The etching of boron phosphor silica glass (BPSG), tetraethyl orthosilicate (TEOS), thermal $SiO_2$, and Si-nitride (SiN) was investigated by using a two chamber system with HF/py etchant and alcohol additives. The etch rate of sacrificial $SiO_2$ increased upon the addition of methanol. The etch selectivity of BPSG with respect to SiN was highest with IPA although the highest etch rate was resulted from methanol except BPSG. The etch rate increased with the temperature in HF/py/MeOH system. Especially the increase of the etch rate was much higher for BPSG with an increase in the reaction temperature. The etch residue was not reduced apparently upon the addition of alcohol cosolvents to HF/py. While the etch rate in HF/$H_2O$ was higher than HF/py/alcohol system, the rate decreased with the addition of alcohols to HF/$H_2O$. The cantilever beam structure of high aspect ratios was released by the dry ething in supercritical carbon dioxide without damage.

The role of grain boundary modifier in $BaTiO_3$ system for PTCR device ($BaTiO_3$계 PTC 재료에서 입계 modifier의 역할)

  • Lee, Jun-Hyeong;Jo, Sang-Hui
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.553-561
    • /
    • 1993
  • In this study, thr effect of $Bi_2O_3$ and BN addition as grain boundary modifiers on sintering and electrical properties of semiconducting PTCR(Positive Temperature Coefficient of Resistivity) mate rial were analyzed using TMA, XRD and Complex Impedance Spectroscopy method. Bismut.h Ox~de and Boron Nitride were added to Y-doped $BaTiO_3$ respectively. Bismuth sesquioxide up to O.lmol%solubil~ ty limit of $Bi_2O_3$ in Y--$BaTiO_3$ ceramics-retarded densification and grain growth, and further addition mitigated these retardation effects. The resistivity at room temperature increased with increasing amount of $Bi_2O_3$ and thus decreased the PTCR effect, probably due to the $Bi_2O_3$ segregation on the grain boundaries. From the complex ~mpedance pattern, it is known that the grain boundary resisitivity is dominant on the whole resistivity of sample. In the result of applying the defect chemistry, $Bi^{3+} \;and \; Bi^[5+}$ are substituted for Ua and Ti site, respectively. Boron nitride decomposed and formed liquid phase among the $BaTiO_3$ grains. The decomposed com~ ponents made the second phase and existed the tr~ple juntion from the result of EPMA. From the complex impendencc pattern, the gram and grain boundary resistivity were small. The grain size increased with increasing BN contents, and decreased grain boundary resistivity enhanced the PTCR effect.

  • PDF

열 화학기상증착법을 이용한 BCN 박막의 합성과 전기적 특성 분석

  • Jeon, Seung-Han;Song, U-Seok;Jeong, Dae-Seong;Cha, Myeong-Jun;Kim, Seong-Hwan;Kim, Yu-Seok;Lee, Su-Il;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.388.2-388.2
    • /
    • 2014
  • 최근 그래핀 연구와 더불어 2차원 구조의 나노소재에 대한 관심이 급증하면서 육각형의 질화붕소(hexagonal boron nitride; h-BN) 박막(nanosheet) [1]이나 붕소 탄화질화물(boron caronitride; BCN) 박막 [2,3]와 같은 2차원 구조체에 대한 연구가 활발히 진행되고 있다. 그 중 BCN은 반금속(semimetal)인 흑연(graphite)과 절연체인 h-BN이 결합된 박막으로 원소의 구성 비율에 따라 전기적 특성을 제어할 수 있다는 장점이 있다. 따라서 다양한 나노소자로의 응용을 위한 연구가 활발히 진행되고 있다. 본 연구에서는 폴리스틸렌(polystyrene, PS)과 보레인 암모니아(borane ammonia)를 고체 소스로 이용하여 열화학기상증착법을 이용하여 BCN 박막를 SiO2 기판 위에 직접 합성하였다. SEM과 AFM 관측을 통해 합성된 BCN 박막을 확인하였으며, RMS roughness가 0.5~2.6 nm로 매우 낮은 것을 확인하였다. 합성과정에서 PS의 양을 조절하여 BCN 박막의 탄소의 밀도를 성공적으로 제어하였으며, 이에 따라 전기적인 특성이 제어되는 양상을 확인하였다. 또한 합성온도 변화에 따른 BCN 박막의 전기적인 특성이 제어되는 양상을 확인하였다. 추가적으로 같은 방법을 이용하여 BCN 박막을 Ni 위에서 합성하여 SiO2 기판위에 전사 하였다. 합성된 BCN 박막의 구조적 특징과 화학적 조성 및 결합 상태를 투과전자현미경(transmission electron microscopy), X-선 광전자 분광법(X-ray photoelectron spectroscopy)을 통해 조사하였다.

  • PDF

Corrosion Behavior of Boron-Carbon-Nitride Films Synthesized by Magnet Sputtering (스퍼터링법으로 합성한 BCN 박막의 내식성)

  • Byon E.;Son M. S.;Lee G. H.;Kwon S. C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.3
    • /
    • pp.229-233
    • /
    • 2003
  • Boron-Carbon-Nitrogen (B-C-N) system is an attractive ternary material since it has not only an extremely high hardness but also a number of other prominent characteristics such as chemical inertness, elevated melting point, and low thermal expansion. In this paper, the corrosion behavior of B-C-N thin films in aqueous solution was investigated B-C-N films with different composition were deposited on a platinum plate by magnetron sputtering in the thickness range of 150-280 nm. In order to understand effect of pH of solutions, $BC_{2.\;4}N$ samples were immerged in 1M HCl, 1M NaCl, and 1M NaOH solution at 298k, respectively. BCN samples with different carbon contents were exposed to 1M NaOH solutions to investigate effect of chemical composition on corrosion resistance. Corrosion rates of samples were measured by ellipsometry, From results, optical constant of $BC_{2,\;4}N$ films was found to be $N_2=2.110-0.295i$. The corrosion rates of $Bi_{1.\;0}C_{2.\;4}N_{1.\;0}$ films were NaOH>NaCl>HCl in orders. With increasing carbon content in B-C-N films, the corrosion resistance of B-C-N films was enhanced. The lowest corrosion rate was obtained for $B_{1.\;0}C_{4.\;4}N_{1.\;9}$ film.

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1996.11a
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

Thermal Conductivity of Thermally Conductive Ceramic Composites and Silicon Carbide/Epoxy Composites through Wetting Process (세라믹 방열 복합체의 열전도도 분석 및 Wetting Process를 이용한 SiC/에폭시 복합체)

  • Hwang, Yongseon;Kim, Jooheon;Cho, WonChul
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.782-786
    • /
    • 2014
  • Various kinds of thermal conductive ceramic/polymer composites (aluminum nitride, aluminum oxide, boron nitride, and silicon carbide/epoxy) were prepared by a casting method and their optical images were observed by FE-SEM. Among these, SiC/epoxy composite shows inhomogeneous dispersion features of SiC and air voids in the epoxy matrix layer, resulting in undesirable thermal conductive properties. To enhance the thermal conductivities of SiC/epoxy composites, the epoxy wetting method which can directly infiltrate the epoxy droplet onto filtrated SiC cake was employed to fabricate the homogeneously dispersed SiC/epoxy composite for ideal thermal conductive behavior, with maximum thermal conductivity of 3.85W/mK at 70 wt% of SiC filler contents.

Mechanical Properties and Microstructure of Mg-Zn-(Mn)-Ca Alloys (Mg-Zn-(Mn)-Ca 합금의 미세조직 및 기계적성질)

  • Eom, Jeong-Pil;Cha, Dong-Deuk;Lim, Su-Guen;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.592-597
    • /
    • 1997
  • The microstructure and tensile properties of Mg-Zn-Ca and Mg-Zn-Mn-Ca alloys have been investigated. The alloys were obtained by melting in a low carbon crucible coated with boron nitride under an Ar gas atmosphere to prevent oxidation and combustion. The Mg alloy melt was cast into the metallic mold at room temperature, and cooling part was located at the bottom of mold. The phase formed during solidification of the Mg-Zn-(Mn) alloys containing 0.5%Ca is $Ca_2Mg_6Zn_3$. The yield strength and ultimate tensile strength of the alloys increased with increasing Zn content, but the ductility did not change with increasing Zn content. The addition of Mn improves the yield strength and ultimate tensile strength of the alloys, but the ductility did not change. Tensile fracture of the alloys revealed brittle failure, with cracking along the $Ca_2Mg_6Zn_3$ phase. The variation of stress with strain obeyed the relationship of the ${\sigma}=K{\varepsilon}^n$.

  • PDF