• Title/Summary/Keyword: Boring Machining

Search Result 31, Processing Time 0.021 seconds

An Evaluation of Factors on the Influence Roundness in Turning Based on the Taguchi Method (다구찌 방법에 기초한 선삭에서 진원도에 영향을 미치는 인자에 관한 평가)

  • Kang, Shin-Gil;Lee, Chang-Ho;Jang, Sung-Min
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.495-501
    • /
    • 2011
  • The purpose of this study is to improve the roundness of CNC turning so that helps the operator to choose the right turning conditions to produce a product with the given parameters. This paper focuses on determining the optimal levels of machining factors for circular shaft with CNC turning. For this purpose, the optimization of factors is performed based on experimental design method. A design and analysis of experiments are conducted to study the effects of these factors on the roundness by using the SIN ratio, analysis of ANOVA, and F-test. Factors, namely, fixed pressure, wall thickness, depth of cut, and feed rate are optimized with consideration of the roundness. The boring tool used in this study is a tungsten carbide coated. The material of workpiece is Al6061 and the machining method is dry cutting.

Bearing Lobe Profile and Cutting Force Modeling (베어링의 로브형상과 절삭력 모델링)

  • 윤문철;조현덕;김성근
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.343-349
    • /
    • 1998
  • A modeling of machined geometry and cutting force was proposed for the case of round shape machining, and the effects of internally machined profile are analyzed and its realiability was verified by the experiments of roundness tester, especially in boring operation in lathe. Also, harmonic cutting force model was proposed with the parameter of specific cutting force, chip width and chip thickness, and in this study, we can see that bored workpiece profile was also mapped into cutting force signal with this model. In general, we can calculated the theoretical lobe profile with arbitrary multilobe. But in real experiments, the most frequently measured numbers are 3 and 5 lobe profile in experiments. With this results, we can predict that these results may be applied to round shape machining such as drilling, boring, ball screw and internal grinding operation with the same method.

  • PDF

The Vibration Measurement of Boring Process by Using the Optical Fiber Sensor at inside of Boring Bar (광섬유 센서의 보링 바 삽입에 의한 진동측정)

  • Song, Doo-Sang;Hong, Jun-Hee;Guo, Yang-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.709-715
    • /
    • 2011
  • Chattering in cutting operations are usually a cumbersome part of the manufacturing process in mechanical. Particular, machining performance such as that of the boring process is limited by cutting condition at the movable components. Among various sources of chatter vibration, detrimental point in cutting condition is found a mechanical condition on overhang. It limits cutting speed, depth, surface roughness and tool wear failure as result because the all properties are varying with the metal removal process. In this case, we have to observe the resonance frequencies of a boring bar for continuous cutting. In the established research, boring bar vibration of cutting system has been measured with the aid of accelerometer. However, the inherent parameters of internal turning operations are severely limit for the real time monitoring on accelerometers. At this point, this paper is proposed other method for real time monitoring during continuous cutting with optical fiber at the inside of boring bar. This method has been used a plastic fiber in the special jig on boring bar by based on experimental modal analysis. In this study, improvement of monitoring system on continuous internal cutting was attempted using optical fiber sensor of inside type because usually chattering is investigated experimentally measuring the variation in chip thickness. It is demonstrated that the optical fiber sensor is possibility to measure of chattering with real time in boring process.

A Study on Diagnostics of Machining System with ARMA Modeling and Spectrum Analysis (ARMA 모델링과 스펙트럼분석법에 의한 가공시스템의 진단에 관한 연구)

  • 윤문철;조현덕;김성근
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.3
    • /
    • pp.42-51
    • /
    • 1999
  • An experimental modeling of cutting and structural dynamics and the on-line detection of malfunction process is substantial not only for the investigation of the static and dynamic characteristics of cutting process but also for the analytic realization of diagnostic systems. In this regard, We have discussed on the comparative assessment of two recursive time series modeling algorithms that can represent the machining process and detect the abnormal machining behaviors in precision round shape machining such as turning, drilling and boring in mold and die making. In this study, simulation and experimental work were performed to show the malfunctioned behaviors. For this purpose, two new recursive approach (REIVM, RLSM) were adopted fur the on-line system identification and monitoring of a machining process, we can apply these new algorithm in real process for the detection of abnormal machining behaviors such as chipping, chatter, wear and round shape lobe waviness.

  • PDF

On the machine error measurement and compensation (NC 공정기계에서 온더머신 오차측정 및 보상)

  • 신동수;정성종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1096-1101
    • /
    • 1992
  • In order tominimize fixing error of workpieces, circle, prismatic, sphere, cylindrical and sculptures types. Modification Rule by Indexing Table and Modification Rule by NC Program are developed for machining centers by using touch trigger probes. The Modification Rule by Indexing Table meas the alignment of workpiece to NC program through degree of freedoms of indexing table. The Modification Rule by NC Program is the alognment of NC program to workpiece ste-tp condition via the generation of NC progarm. A postprocessing module is alos developed for generating NC-part program(User Macro) to compensate for machining errors in end milling and boring processes. Developed method are verified by experiments.

  • PDF

A Study on the Dynamic Response Characteristics of Lathe Boring Bar (선반용 보링바의 동적응답특성 변동에 관한 연구)

  • Chun, Se-Ho;Ko, Tae-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.62-69
    • /
    • 2010
  • Internal lathe machining with a boring bar is weak with respect to vibration because the bar is long and slender. Therefore, it is important to study the dynamic characteristics of a boring bar. The purpose of this study was to identify the effects of overhang and cutting conditions on the dynamic response characteristics of a boring bar. For an efficient experiment, an $L_g(3^3)$ orthogonal array was applied and the results were quantitatively analyzed by ANOVA. Overhang, feed per revolution, and depth of cut were selected as independent variables. Meanwhile, dynamic stiffness, damping ratio, damping coefficient, and acceleration were chosen as dependent variables. The vibration signal was obtained from an accelerometer attached to the boring bar, followed by visualization by a signal analyzer. The effect of overhang was found to have a significant effect on the dynamic stiffness, damping ratio, and damping coefficient, but the other variables did not. As the length of the overhang increased, the dynamic stiffness decreased and the damping ratio increased. In addition, the damping coefficient increased until the length of the overhang was 4D (where D is the shank diameter), after which it remained constant. The acceleration decreased until the overhang length was 4D, and then increased sharply when the overhang was increased further. From these results, the behavioral trend of the damping characteristics changed when its overhang length was 4D. Consequently, there is a critical point that the dynamic characteristics of boring bar change.

A Study on the Machining Accuracy according to Vibration and Unbalance Decrease in Rotational Speed Domains of High Precision Machine Tools (정밀 공작기계의 회전 영역별 진동 및 불평형량 감소에 따른 가공 정밀도 영향에 관한 연구)

  • Son, Deok-Soo;Kim, Sang-Hwa;Park, Il-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.121-126
    • /
    • 2013
  • Precision machine tools for high dignity cutting are needed for efforts to improve machining accuracy. However, there are many factors to improve machining accuracy. This study investigated how machining accuracy changes when variation and unbalance amount in rotational speed domain is decreased. Machining accuracy of initial machine tools depends on manufacturing and assembly of parts such as bearing. And then, vibration and noise vary with volume of unbalance amount when it is rotation, so it effects unbalance amount. Also vibration and noise increased by unbalance shorten spindle's life and it especially makes worse boring accuracy. Therefore, this study studied the change of roundness and cylindricity of workpiece when it decreases variation and unbalance in rotational speed domain.

Roundness and Dimensional Accuracy Analysis using SNCM616 Alloy Still (SNCM616 합금강을 이용한 진원도와 치수정밀도 분석)

  • Choi, Chul-Woong;Kim, Jin-Su;Shin, Mi-Jung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.599-606
    • /
    • 2019
  • In this study, it was aimed to find the optimal cutting conditions by measuring and analyzing the dimensional accuracy of SNCM 616 alloy steel, which is commonly used in industry, by precision hole machining using Ø25 mm and 8-blade reamer in CNC-HBM to be. As a result of the roundness and dimensional accuracy, it was found that the spindle speed had a significant effect on the dimensional tolerance value. Optimum cutting conditions are spindle speed 25 rpm and feed rate 20 mm / min.

A Study on the Modeling and Prediction of Machined Profile in Round Shape Machining (동근형상가공의 형상모델링과 예측에 관한 연구)

  • 윤문철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.659-664
    • /
    • 2000
  • In this paper, We have discussed on the modeling of machined outer geometry which was established for the case of round shape machining, also the effects of externally machined profile are analyzed and its modeling realiability was verified by the experiments of roundness testing, especially in lathe operation. In this study, we established harmonic geometric model with the parameter harmonic function. In general, we can calculate the theoretical roundness profile with arbitrary multilobe parameter. But in real experiments, only 2-5 lobe profile was frequently measured. the most frequently ones are 3 and 5 lobe profile in experiments. With this results, we can predict that these results may be applies to round shape machining such as turning, drilling, boring, ball screw and cylindrical grinding operation in bearing and shaft making operation with the same method. In this study, simulation and experimental work were performed to show the profile behaviors. we can apply these new modeling method in real process for the prediction of part profile behaviors machined such as in round shape machining operation.

  • PDF

Analysis of Strength and Displacement of Jig Body in Index Machine (Index Machine의 Jig Body 강도 및 변위해석)

  • 한근조;오세욱;김광영;안성찬;전형용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.24-30
    • /
    • 1998
  • Strength and displacement of jig body in index machine utilized for multiprocess machining such as drilling, boring and tapping, etc, at the same time were analyzed by the use of finite element analysis soft ware ANSYS 5.2A. The whole geometry was constructed by 4048 elements and 7016 nodes employing 8 node brick element. The analyses were carried out on five loading cases combining vertical and horizontal machining to simulate the case occurring large displacement and the one occurring small displacement one and provided following conclusions. (1) Jig body had sufficient strength because its safety factor was 6.95 even in the most severe loading case. (2) The largest displacement in Z direction was 549 m and that in radial direction was 43.7 m. (3) In order to reduce the displacement, vertical machining rather than horizontal or two or three processes should be adopted in the same station. (4) Alternate change of horizontal machining direction at consecutive stations can reduce the displace ment. (5) The dimension of the slider should be increased to reduce the displacement by the tolerance in the sliding part. (6) A bypass idle piston head needs to be installed to give a counterpart supporting load from opposite direction for a single horizontal machining case.

  • PDF