• Title/Summary/Keyword: Borehole test

Search Result 231, Processing Time 0.019 seconds

A Case Study on a Large Scale Borehole Test Blasting to Generate Man-made Earthquake (인공지진 발생을 위한 대규모 시추공 시험발파 사례연구)

  • Jeong, Ju-Hwan;Choi, Byung-Hee;Ryu, Chang-Ha;Min, Hyung-Dong;Choi, Hyung-Bin
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.48-55
    • /
    • 2009
  • In the process of identifying the earth's crust structures to accurately locate the seismic epicenter, man-made earthquakes need to be generated. Such a large-scale ground vibration can be generated by a deep borehole blasting, but it can also accompany some environmental impacts on the surroundings. In this respect, a borehole test blasting was carried out to determine the maximum charge weight that could be used without affecting the various structures around the blast site. Total 400kg of gelatine-type dynamites was used in the test blast. As a result, a prediction equation for ground vibrations was derived from the measured data. With the allowable level of 3.0 mm/s for residential structures, the maximum charge weight was determined to be 677kg if military structures near the site were considered. But if the military structures were not considered, it was found that up to 2100kg of explosives could be used without affecting old houses in the nearby village.

A Basic Study on Borehole Breakout under Room Temperature and High Temperature True Triaxial Compression (상온 및 고온 하 진삼축압축실험을 이용한 시추공의 파괴 거동 기초 연구)

  • Yoon, Jeonghwan;Min, Ki-Bok;Park, Eui-Seob;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.559-572
    • /
    • 2020
  • This paper performs laboratory experiments for borehole stability considering temperature and true triaxial stress condition, and observes a thermo-mechanical behavior of the rock under stress and temperature conditions of deep underground. China yellow sandstone and Hwangdeung granite specimens were used to perform a true triaxial compression test. Mechanical tests were carried out under nine confining pressure conditions, and thermo-mechanical tests using granite samples were carried out under six confining pressure conditions at 60-100℃. In the mechanical tests, maximum principal stress at borehole breakout was proportional to intermediate principal stress. In the thermo-mechanical tests, it was confirmed that thermal stress is added to the stress field of the borehole with the increase in temperature, resulting in additional breakout progress. To analyze the results of the laboratory experiment, Mogi-Coulomb failure criterion was used. The results of traditional triaxial compression test on cylindrical specimens and borehole breakout under true triaxial compressions matched well with Mogi-Coulomb failure criterion.

Feasibility test on EDZ detection by using borehole radar survey

  • Cho, Seong-Jun;Kim, Jung-Ho;Son, Jeong-Sul;Kim, Chang-Ryol;Sugn, Nak-Hun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.239-244
    • /
    • 2006
  • Borehole radar reflection surveys were carried out in the horizontal borehole to detect EDZ while constructing the tunnel for the research facility of the nuclear waste disposal in Korea. The horizontal borehole has been bored at a length of 35 m from shelter to be parallel with the tunnel which would be planed. While the tunnel has been constructing with the explosive excavation, the borehole radar reflection surveys carried out 5 times with the interval of 2 or 4 days for monitoring EDZ. The most typical change of the reflection event resulted from the face of the wall of tunnel which had been produced newly by the excavation of the tunnel daily, EDZ has been detected with constructing images of difference between two measurement stages, and also the change of EDZ through the time has been done, which is due to the generation of crack and weakening of the rock strength of the face of the tunnel's wall near previous portion of the face of a blind end of tunnel according to explosive excavation.

  • PDF

Seepage Velocity and Borehole Image of Bottom Protection Layer Filled with Dredged Sand in Sea Dyke (준설해사로 충진된 바닥보호공의 형상 및 침투유속평가)

  • Oh, Young-In;Kang, Byung-Yoon;Kim, Ki-Nyeon;Cho, Young-Gwon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1727-1734
    • /
    • 2008
  • After the final closure of sea dyke, seepage behaviour of embankment is highly changed by variation of water head different between tide wave and controlled water level at fresh lake. Especially, the seepage behaviour of bottom protection layer of final closure section is more important factor for structural and functional stability of sea dyke, because of the bottom protection layer of final closure section is penetrated sea side to fresh lake. Even though bottom protection layer was filled with dredged fine sand, it has a high permeability. In this paper, mainly described about the seepage velocity and borehole image of bottom protection layer filled with dredged sand after final closure. Various in-situ tests such as BIPS (Borehole Image Processing System) and ABI (Acoustic Borehole Imager) survey, wave velocity measuring, and color tracer survey were conducted to evaluate the seepage behavior of bottom protection layer. Based on the in-situ tests, the bottom protection layer of final closure section was almost filled with dredged sand which is slightly coarse grain sand and there have sea water flow by water head different between tide wave and controlled water level at fresh lake. Also, comply with tracer survey results, the sea water flow path was not exist or generated in the bottom protection layer. However, because of this result not only short term survey but also just one test borehole survey results, additional long term and other borehole tests are needed.

  • PDF

Hydraulic-Mechanical Modeling on Fracture Transmissivity Evolution Around a Borehole (시추공 주변 단열 투수도 진화에 대한 수리-역학 연동 모델링 평가)

  • Choi, Chae-Soon;Park, Kyung-Woo;Park, Byeong-Hak;Ko, Nak-Youl;Ji, Sung-Hoon
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.55-66
    • /
    • 2021
  • Hydraulic-mechanical (H-M) coupled numerical modeling was used to evaluate the evolution of hydrogeological properties in response to the installation and expansion of a borehole. A domain with a discrete fracture network was adopted for discontinuum modeling to simulate changes in fracture apertures. Comparison with real hydraulic test data shows that the effects of principal stress direction and expansion of borehole diameter were reasonably simulated by H-M coupled numerical modeling. The modeling confirmed that aperture changes depended on the principal stress direction, with an increase in aperture size due to vertical displacement being the dominant effect. A concentration of shear dilation around the borehole had an additional, subsidiary, effect on the hydrogeological evolution. These results show that the permeability of fractured rock can be increased by changing the hydraulic properties of a fracture through stress redistribution caused by the installation and expansion of a borehole.

Field Tests Investigating the Ground Borne Vibration Induced by Underground Railway Tunnel (터널 내 열차주행으로 인한 지반진동 현장측정시험)

  • Ahn, Sung-Kwon;Bang, Eun-Seok;Lee, Bae
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.208-213
    • /
    • 2010
  • This paper describes the instruments used, and the test procedures adopted, and the findings obtained from a research project aiming to investigate, via full-scale field tests, the ground borne vibration caused by underground railway tunnel constructed in hard rock. The ground borne vibration induced by high-speed trains (i.e. the Korea Train eXpress (KTX) services) with a speed of approximately 200km/hr was measured inside the borehole constructed in the close proximity to the KTX tunnel using 3-component borehole seismographs in order to investigate the wave propagation of ground borne vibration. This paper also discusses the limitation associated with the current practice of measuring ground borne vibration using conventional borehole seismograph.

The Effects of the Installation Conditions of Ground Loop Heat Exchanger to the Thermal Conductivity and Borehole Resistance (지중열교환기 설치 조건이 지중 유효 열전도도와 보어홀 열저항에 미치는 영향)

  • Lim, Hyo-Jae;Kong, Hyoung-Jin;Kang, Sung-Jae;Choi, Jae-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • A ground loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. A proper design requires certain site specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U tube configurations on ground effective thermal conductivity and borehole thermal resistance. In this study, thermal response tests were conducted using a testing device to 9 different ground loop heat exchangers. From the experimental results, the length of ground loop heat exchanger affects to the effective thermal conductivity. The results of this experiment shows that higher thermal conductivity of grouting materials leads to the increase effective thermal conductivity from 22 to 32%. Also, mounting spacers have increased by 14%.

Thermal transfer behavior in two types of W-shape ground heat exchangers installed in multilayer soils

  • Yoon, Seok;Lee, Seung-Rae;Go, Gyu-Hyun;Xue, Jianfeng;Park, Hyunku;Park, Dowon
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.79-98
    • /
    • 2014
  • This paper presents an experimental and numerical study on the evaluation of a thermal response test using a precast high-strength concrete (PHC) energy pile and a closed vertical system with W-type ground heat exchangers (GHEs). Field thermal response tests (TRTs) were conducted on a PHC energy pile and on a general vertical GHE installed in a multiple layered soil ground. The equivalent ground thermal conductivity was determined by using the results from TRTs. A simple analytical solution is suggested in this research to derive an equivalent ground thermal conductivity of the multilayered soils for vertically buried GHEs. The PHC energy pile and general vertical system were numerically modeled using a three dimensional finite element method to compare the results with TRTs'. Borehole thermal resistance values were also obtained from the numerical results, and they were compared with various analytical solutions. Additionally, the effect of ground thermal conductivity on the borehole thermal resistance was analyzed.

A Study on the Soft Reclaimed Lands Composed of Shallow Ocean Sediments in Keum River Estuary: Two Dimensional S Wave Velocity and Resolution Obtained by Inverting Surface Waves (금강 하구 천해성 퇴적층의 연약지반에 관한 연구: 표면파 역산에 의한 S파 속도구조와 해상도)

  • Jung, Hee-ok
    • Journal of the Korean earth science society
    • /
    • v.22 no.3
    • /
    • pp.179-185
    • /
    • 2001
  • Borehole tests are commonly used as a tool to obtain the physical properties of soils and rocks. The results of borehole tests are, however, discontinuous. Interpolation methods are applied to interpret the data gap between the borehole test points. The interpolation is valid only if the horizontal variations of the ground between the test points are small enough to ignore. A surface wave inversion method was used to study the S wave velocity of the very soft soil to provide the continuous 2 dimensional S wave velocity structure. The resolution of the S wave velocity structure was used to interpret the inversion results.

  • PDF