• Title/Summary/Keyword: Borehole test

Search Result 231, Processing Time 0.022 seconds

Two Dimensional Shear Wave Velocity Using the Inversion of Surface Waves (표면파 역산을 이용한 2차원 S파 속도구조에 관한 연구)

  • Jung, Hee-Ok
    • Journal of the Korean earth science society
    • /
    • v.21 no.6
    • /
    • pp.675-682
    • /
    • 2000
  • 25 seismic shot gathers were obtained to study the two dimensional subsurface shear wave velocities in a landfilled area near the Keum river estuary. Borehole(BH#1 and BH#2) tests at two sites were made in the same area. Standard Penetration Tests were also performed at the same time. The 2-D shear wave velocity structure resulted from the inversion of the seismic data shows that the subsurface of the studied area consists of the upper 1${\sim}$3 meter thick layer(200 m/sec${\sim}$700 m/sec), the middle 5${\sim}$8 m thick low velocity layer(100 m/sec${\sim}$400 m/sec), and the lower layer of 1000m/sec or higher shear wave velocities. The thickness of the low velocity layer decreases from the BH #1 site to the BH #2 site. The depth to the basement also decreases toward the BH #2 site. The examination of the S wave velocity structure, the description of the geologic contents, and the Standard Penetration Test values indicate that the middle layer of low shear wave velocity may be related to the clay content of the layer. On the other hand, the Standard Penetration test values increase with depth, showing no significant relationship with the geologic contents of the subsurface. This study shows that the inversion of surface waves can be effective in the study of the shear wave velocity, especially in the area where low velocity layers can be found. The method of inversion of surface waves also can be used as a viable technique to overcome the limit of the seismic refraction method.

  • PDF

Interpretation of Geophysical and Engineering Geology Data from a Test Site for Geological Field Trip in Jeungpyung, Chungbuk (충북 증평 지질학습장 시험부지에 대한 물리탐사 및 지질공학 자료의 해석)

  • Kim, Kwan-Soo;Yun, Hyun-Seok;Sa, Jin-Hyeon;Seo, Yong-Seok;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.339-352
    • /
    • 2016
  • The best way of investigating the physical and mechanical properties of subsurface materials is the combined interpretation of data from borehole geophysical surveys and geotechnical experiments with rock samples. In this study two surface seismic surveys with refraction and surface-wave method are alternatively conducted for downhole seismic surveys in test site for geological field trip in Jeungpyung, Chungbuk. P- and S-wave velocity structures are delineated by refraction and MASW (multichannel analysis of shear waves) methods, respectively. Possion's ratio section, reconstructed from P- and S-wave velocities, is correlated to the outcrop geological features consisting of reddish sedimentary rock, gray volcanic rock, and joints/fractures. In addition, rock samples representative for reddish sedimentary and gray volcanic features are geotechnically analyzed to provide physical, mechanical properties, and elastic modulus. Dynamic elastic moduli estimated from geophysical data is found to be higher than the one from geotechnical data. Reddish sedimentary rock characterized with low porosity and moisture content corresponds to the zone of low electrical resistivities and their small variations in the resistivity sections between the rainy and dry days. This trend suggests that the weathered gray volcanic rock and the nearby fractures with higher low porosity and moisture content are interpreted to be good carrier especially in rainy season.

Study of Geological Log Database for Public Wells, Jeju Island (제주도 공공 관정 지질주상도 DB 구축 소개)

  • Pak, Song-Hyon;Koh, Giwon;Park, Junbeom;Moon, Dukchul;Yoon, Woo Seok
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.509-523
    • /
    • 2015
  • This study introduces newly implemented geological well logs database for Jeju public water wells, built for a research project focusing on integrated hydrogeology database of Jeju Island. A detailed analysis of the existing 1,200 Jeju Island geological logs for the public wells developed since 1970 revealed six major indications to be improved for their use in Jeju geological logs DB construction: (1) lack of uniformity in rock name classification, (2) poor definitions of pyroclastic deposits and sand and gravel layers, (3) lack of well borehole aquifer information, (4) lack of information on well screen installation in many water wells, (5) differences by person in geological logging descriptions. A new Jeju geological logs DB enabling standardized input and output formats has been implemented to overcome the above indications by reestablishing the names of Jeju volcanic and sedimentary rocks and utilizing a commercial, database-based input structured, geological log program. The newly designed database structure in geological log program enables users to store a large number of geology, well drilling, and test data at the standardized DB input structure. Also, well borehole groundwater and aquifer test data can be easily added without modifying the existing database structure. Thus, the newly implemented geological logs DB could be a standardized DB for a large number of Jeju existing public wells and new wells to be developed in the future at Jeju Island. Also, the new geological logs DB will be a basis for ongoing project 'Developing GIS-based integrated interpretation system for Jeju Island hydrogeology'.

A Study about Effectiveness and Usefulness of a FEM Slug Test Model (유한 요소기법을 이용한 Slug시험 모델의 타당성 및 유용성 연구)

  • 한혜정;최종근
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • Slug tests are the most widely used field method for quantification of hydraulic conductivity of porous media. Well recovery is affected by well casing, borehole radii, screened length, hydraulic conductivity, and specific storage of porous media. In this study, a new slug tests model was developed through finite element approximation and the validity and usefulness of the model were tested in various ways. Water level fluctuation in a well under slug test and cons-equent groundwater flow in the surrounding porous medium were appropriately coupled through estimation of well-flux using an iteration technique. Numerical accuracy of the model was verified using the Cooper et al. (1967) solution. The model has advantages in simulations for monitored slug tests, partial penetration, and inclusion of storage factor. Volume coverage of slug tests is significantly affected by storage factor. Magnitude and speed of propagation of head changes from a well increases as storage factor becomes low. It will be beneficial to use type curves of monitored head transients in the surrounding porous formation for estimation of specific storage. As the vertical component of groundwater flow is enhanced, the influence of storage factor on well recovery decreases. For a radial-vertical flow around a partially penetrated well, deviations between hydraulic estimates by various methods and data selection of recovery curve are negligible on practical purposes, whereas the deviations are somewhat significant for a radial flow.

  • PDF

A Study of a Pilot Test for a Blasting Performance Evaluation Using a Dry Hole Charged with ANFO (건공화 공법의 발파 성능 평가를 위한 현장 시험에 관한 연구)

  • Lee, Seung Hun;Chong, Song-Hun;Choi, Hyung Bin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.197-208
    • /
    • 2022
  • The existence of shallow bedrock and the desire to use underground space necessitate the use of blasting methods. The standard blasting method under water after drilling is associated with certain technical difficulties, including reduced detonation power, the use of a fixed charge per delay, and decoupling. However, there is no blasting method to replace the existing blasting method. In this paper, a dry hole charged with ANFO blasting is assessed while employing a dry hole pumping system to remove water from the drill borehole. Additional standard blasting is also utilized to compare the blasting performances of the two methods. The least-squares linear regression method is adopted to analyze the blasting vibration velocity quantitatively using the measured vibration velocity for each blasting method and the vibration velocity model as a function of the scaled distance. The results show that the dry hole charged with ANFO blasting will lead to greater damping of the blasting vibration, more energy dissipation to crush the surrounding rock, and closer distances for the allowable velocity of the blasting vibration. Also, standard blasting shows much longer influencing distances and a wider range of the blasting pattern. The pilot test confirms the blasting efficiency of dry hole charged with ANFO blasting.

Estimation of Load-Settlement Curves of Embedded Piles Combining Results of End of Initial Driving and Restrike Dynamic Pile Tests (초기항타 및 재항타 동재하시험 결과를 조합한 매입말뚝의 하중-침하량 곡선 산정)

  • Seo, Mi Jeong;Park, Jong-Bae;Park, Min-Chul;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.7
    • /
    • pp.15-28
    • /
    • 2020
  • As the skin friction of an embedded pile is produced by the cement paste injected into the borehole, the skin friction cannot be evaluated by the end of initial driving test, which is conducted before the cement paste is cured. In addition, the total resistance of an embedded pile may not be properly evaluated during the restrike test if the base resistance is not fully mobilized because of the insufficient driven energy. The objective of this study is to suggest a new load-settlement curve of embedded piles by combining the results of the end of initial driving and restrike tests. Test piles are installed at fields by using the embedded pile method, and the results of the dynamic pile tests are analyzed using CAse Pile Wave Analysis Program (CAPWAP) after the end of initial driving and restrike tests are conducted. A new load transfer curve, which combines the behaviors of the pile base at the end of initial driving and of the pile shaft at the restrike, is suggested, and a new load-settlement curve is obtained. Subsequently, the resistances of the test piles are evaluated using the combined load-settlement curve, and compared with the results from the end of initial driving and restrike tests. The results showed that the resistances, which are evaluated using the combined load-settlement curve, may overcome the underestimation of the resistance because of the insufficient driven energy. In addition, the resistance resulted from the combined load-settlement curve may be more similar to that from the static load test because the suggested load transfer curve is closer to the behavior of the embedded pile compared to the results of end of initial driving and restrike tests. Therefore, this study demonstrates that the combined load-settlement curve may be effectively used for the evaluation of the bearing capacity of embedded piles.

Evaluation of the applicability of the surface wave method to rock fill dams (사력댐에서의 표면파 기법 적용성 평가 연구)

  • Kim, Jong-Tae;Kim, Dong-Soo;Park, Heon-Joon;Bang, Eun-Seok;Kim, Sung-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.9-23
    • /
    • 2010
  • In current design practice, the shear wave velocity (Vs) of the core and rock-fill zone of a dam, one of the characteristics essential for seismic response design, is seldom determined by field tests. This is because the borehole seismic method is often restricted in application, due to stabilisation activities and concern for the security of the dam structure, and surface wave methods are limited by unfavourable in-situ site conditions. Consequently, seismic response design for a dam may be performed using Vs values that are assumed, or empirically determined. To estimate Vs for the core and rock-fill zone, and to find a reliable method for measuring Vs, seismic surface wave methods have been applied on the crest and sloping surface of the existing 'M' dam. Numerical analysis was also performed to verify the applicability of the surface wave method to a rock-fill dam. Through this numerical analysis and comparison with other test results, the applicability of the surface wave method to rock-fill dams was verified.

A Geophysical Survey of an Iron Mine Site (철광산 지역에서의 물리탐사 기술 적용 연구)

  • Kim, Kiyeon;Oh, Seokhoon
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.575-587
    • /
    • 2013
  • DC electrical and electromagnetic survey was applied to evaluate the reserve of an iron mine site. We analyzed the borehole cores and the cores sampled from outcrops in order to decide which geophysical method was efficient for the evaluation of iron mine site and to understand the geological setting around the target area. Based on the core tests for specific weight, density, porosity, resistivity and P-wave velocity, showing that the magnetite could be distinguishable by the electrical property, we decided to conduct the electrical survey to investigate the irone mine site. According to previous studies, the DC electrical survey was known to have various arrays with high resolutions effective to the survey of the iron mine site. However it was also known that the skin depth is too shallow to grasp the deep structure of iron mine. To compensate the weakness of the DC electrical method, we applied the MagnetoTelluric (MT) survey. In addition, a Controlled Source MT (CSMT) method was also applied to make up the shortcoming of MT method which is weak for shallow targets. From the DC electrical and MT survey, we found a new low resistivity zone, which is believed to be a magnetite reserve beneath the old abandoned mine. Therefore, this study was confirmed for additional utility value.

A prediction of the rock mass rating of tunnelling area using artificial neural networks (인공신경망을 이용한 터널구간의 암반분류 예측)

  • Han, Myung-Sik;Yang, In-Jae;Kim, Kwang-Myung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.4
    • /
    • pp.277-286
    • /
    • 2002
  • Most of the problems in dealing with the tunnel construction are the uncertainties and complexities of the stress conditions and rock strengths in ahead of the tunnel excavation. The limitations on the investigation technology, inaccessibility of borehole test in mountain area and public hatred also restrict our knowledge on the geologic conditions on the mountainous tunneling area. Nevertheless an extensive and superior geophysical exploration data is possibly acquired deep within the mountain area, with up to the tunnel locations in the case of alternative design or turn-key base projects. An appealing claim in the use of artificial neural networks (ANN) is that they give a more trustworthy results on our data based on identifying relevant input variables such as a little geotechnical information and biological learning principles. In this study, error back-propagation algorithm that is one of the teaching techniques of ANN is applied to presupposition on Rock Mass Ratings (RMR) for unknown tunnel area. In order to verify the applicability of this model, a 4km railway tunnel's field data are verified and used as input parameters for the prediction of RMR, with the learned pattern by error back propagation logics. ANN is one of basic methods in solving the geotechnical uncertainties and helpful in solving the problems with data consistency, but needs some modification on the technical problems and we hope our study to be developed in the future design work.

  • PDF

Resistivity Imaging Using Borehole Electrical Resistivity Tomography: A Case of Land Subsidence in Karst Area Due to the Excessive Groundwater Withdrawal (시추공 전기비저항 토모그래피를 이용한 비저항 영상화: 과잉취수에 의한 석회암 지반침하 지역 사례)

  • Song, Sung-Ho;Lee, Gyu-Sang;Um, Jae-Youn;Suh, Jung-Jin
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.537-547
    • /
    • 2011
  • Electrical resistivity tomography surveys using boreholes were applied to reveal the cause of a catastrophic land subsidence accompanied by the excessive groundwater withdrawal in urban karst area and to map the connectivity of disseminated cavities over the study area. In order to understand the hydrogeological characteristics, resistivity using exsitu core samples, groundwater level for five boreholes, and hydraulic conductivity using slug test were measured. The hydraulic conductivity variation ranging from 0.8 to $9.3{\times}10^{-4}\;cm/s$ for five boreholes and a gentle slope of groundwater level indicated that there is no significant characteristics of hydraulic heterogeneity. Core samples of the lime-silicated rock were classified as three groups including cracked, weathered, and fresh and measured the resistivity values ranged from 103 to 161, 218 to 277, and 597 to 662 ohm-m, respectively. Drilling results that showed the cavity filled with clay materials and tomogram for this region indicated resistivity value lower than 50 ohm-m. From the inverted resistivity results for each section with five boreholes, cavity and fractured layer were distributed along the depth between 10 and 20 m overall area and cavities ranging from 4 to 6 m filled with clay materials.