• Title/Summary/Keyword: Borehole radar

Search Result 26, Processing Time 0.02 seconds

Multi-purpose Geophysical Measurements System Using PXI (PXI를 이용한 다목적 물리탐사 측정 시스템)

  • Choi Seong-Jun;Kim Jung-Ho;Sung Nak-Hun;Jeong Ji-Min
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.3
    • /
    • pp.224-231
    • /
    • 2005
  • In geophysical field surveys, commercial equipments often fail to resolve the subsurface target or even sometimes fail to be applied because they do not fit to the various field situations or the physical properties of the medium or target. We developed a geophysical measurement system, which can be easily adapted for the various field situations and targets. The system based on PXI with A/D converter and some stand alone equipment such as Network Analyzer was applied to borehole radar survey, borehole sonic measurement and electromagnetic noise measurement. The system for borehole radar survey consists of PXI, Network Analyzer, dipole antennas, GPIB interface is used for PXI to control Network Analyzer. The system for borehole sonic measurement consists of PXI, 24 Bit A/D converter, high voltage pulse generator, transmitting and receiving piezoelectric sensors. The electromagnetic noise measurement system consists of PXI, 24 Bit A/D converter, 2 horizontal component electric field sensors and 2 horizontal and 1 vertical component magnetic filed sensors. The borehole radar system has been successfully applied to detect the width of the artificial tunnel through which the borehole pass and to image buried steel pipe, while the commercial borehole radar equipment failed. The borehole sonic system was tested to detect the width of artificial tunnel and showed a reasonable result. The characteristic of electromagnetic noise was grasped at an urban area with the data from the electromagnetic noise measurement system. The system is also applied to characterize the signal distortion by induction between the electric cables in resistivity survey. The system can be applied various geophysical problems with a simple modification of the system and sensors.

Design and Performance Analysis of UWB Modules for Borehole Radar System (시추공 레이더 시스템에 사용되는 UWB 모듈의 설계 및 성능 분석)

  • Cho, Jae-Hyoung;Kim, Sang-Wook;Kim, Se-Yun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1121-1129
    • /
    • 2009
  • In this paper, the UWB(Ultra-Wide Band) modules such as a pulse generator and the LNA(Low-Noise Amplifier) with AGC(Auto Gain Control) are designed to construct a cross-borehole pulse radar system, of which performance is compared with the existing system. The budget and specification of the radar system are determined by calculating the total path loss of the underground medium including an empty cavity. The pulse generator is fabricated to have the repeatation frequency 40 kHz, the pulse width lower than 5 ns and the peak signal level +73 dBm. The UWB LNA is designed to have the noise figure 3.77 dB, the variable gain range 100 dB and the frequency range of 20 MHz to 200 MHz. Compared with the existing system in an actual test site, the implemented system renders it possible to detect the blind area due to the UWB LNA with low noise figure.

Three-Dimensional Borehole Radar Modeling (3차원 시추공 레이다 모델링)

  • 예병주
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.41-50
    • /
    • 2000
  • Geo-radar survey which has the advantage of high-resolution and relatively fast survey has been widely used for engineering and environmental problems. Three-dimensional effects have to be considered in the interpretation of geo-radar for high-resolution. However, there exists a trouble on the analysis of the three dimensional effects. To solve this problem an efficient three dimension numerical modeling algorithm is needed. Numerical radar modeling in three dimensional case requires large memory and long calculating time. In this paper, a finite difference method time domain solution to Maxwell's equations for simulating electromagnetic wave propagation in three dimensional media was developed to make economic algorithm which requires smaller memory and shorter calculating time. And in using boundary condition Liao absorption boundary. The numerical result of cross-hole radar survey for tunnel is compared with real data. The two results are well matched. To prove application to three dimensional analysis, the results with variation of tunnel's incident angle to survey cross-section and the result when the tunnel is parallel to the cross-section were examined. This algorithm is useful in various geo-radar survey and can give basic data to develop dat processing and inversion program.

  • PDF

Automatic Determination of the Azimuth Angle of Reflectors in Borehole Radar Reflection Data Using Direction-finding Antenna (방향탐지 안테나를 이용한 시추공 레이다 반사법 탐사에 있어서 반사층 방위각의 자동 결정)

  • Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.3
    • /
    • pp.176-182
    • /
    • 1998
  • The borehole radar reflection survey can image the underground structure with high resolution, however, we cannot get any information on the orientation of the reflectors with dipole antenna alone. The direction-finding antenna system is commonly used to give the solution to the problem. However, the interpretation of the data from direction- finding antenna may be time-consuming, and sometimes have ambiguities in the sense of precise determination of the azimuth. To solve the problem, we developed the automatic azimuth finding scheme of reflectors in borehole radar reflection data using direction-finding antenna. The algorithm is based on finding the azimuthal angle possibly showing the maximum reflection amplitude in the least-squared error sense. The developed algorithm was applied to the field data acquired in quarry mine. It was possible to locate nearly all of the reflectors in three dimensional fashion, which coincide with the known geological structures and man-made discontinuities.

  • PDF

Integrity test and depth estimation of deep foundations (깊은 기초의 건전도시험과 근입깊이 조사)

  • Jo Churl-hyun;Jung Hyun-key;Lee Tai-sup;Kim Hag-soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.202-216
    • /
    • 1999
  • The deep foundation is frequently used for the infrastructures. Since the quality control of the cast-in-place concrete foundations such as CIP piles and slurry walls is not so easy as that of the ready made PC(prestressed concrete) piles, it is necessary to get the information on the integrity of the concrete of the foundation. The depth estimation of foundations whose depths are unknown is also very important in repair and reinforcement works or in safety inspection and assessment to the big structures. The cross-hole sonic logging(CSL) system and the single channel reflection seismic measurement system were developed to test the integrity of pile. The former is well applied to CIP structures, while the later to all kinds of piles with less accurate result compared to that of CSL. To estimate the depth of the deep foundations, parallel seismics, borehole RADAR, and borehole magnetics can be used.

  • PDF

Numerical modelling of electromagnetic waveguide effects on crosshole radar measurements (시추공간 레이다 측정에서 전자기 도파관 효과의 수치모델링)

  • Jang, Han-Nu-Ree;Park, Mi-Kyung;Kim, Hee-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.69-76
    • /
    • 2007
  • High-frequency electromagnetic (EM) wave propagation associated with borehole ground-penetrating radar (GPR) is a complicated phenomenon. To improve the understanding of the governing physical processes, we employ a finite-difference time-domain solution of Maxwell's equations in cylindrical coordinates. This approach allows us to model the full EM wavefield associated with crosshole GPR surveys. Furthermore, the use of cylindrical coordinates is computationally efficient, correctly emulates the three-dimensional geometrical spreading characteristics of the wavefield, and is an effective way to discretise explicitly small-diameter boreholes. Numerical experiments show that the existence of a water-filled borehole can give rise to a strong waveguide effect which affects the transmitted waveform, and that excitation of this waveguide effect depends on the diameter of the borehole and the length of the antenna.

Borehole radar monitoring of infiltration processes in a vadose zone

  • Jang, Han-Nu-Ree;Park, Mi-Kyung;Kuroda, Seiichiro;Kim, Hee-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.313-316
    • /
    • 2007
  • Ground-penetrating radar (GPR) is an effectiveness tool for imaging spatial distribution of hydrogeologic parameters. An artificial groundwater recharge test has been conducted in Nagaoka City in Japan, and time-lapse crosshole GPR data were collected to monitor infiltration processes in a vadose zone. Since radiowave velocities in a vadose zone are largely controlled by variations in water content, the increase in traveltimes is interpreted as an increase in saturation in the test zone. We use a finite-difference time-domain method in two-dimensional cylindrical coordinates to simulate field results. Numerical modeling successfully reproduces the major feature of velocity changes in the filtration process.

  • PDF

Evaluating stability of dam foundations by borehole and surface survey using Step Frequency Radar

  • Jha Prakash C.;Balasubramaniam V. R.;Nelliat Sandeep;Sivaram Y. V.;Gupta R. N.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.328-334
    • /
    • 2003
  • Evaluating stability of dam foundations is one of the prime areas of any rock engineering investigations. Despite best engineering efforts in the design and construction of dam foundations, the foundation regime of a constructed dam suffers deterioration due to continuous erosion from backwater current of dam discharge and dynamic effects of loading and unloading process. Even during construction, development of frequent cracks due to sudden thermal cooling of concrete blocks is not uncommon. This paper presents two case studies from India and Bhutan. In the first case, the back current of water discharge from the Srisailam dam in India had continuously eroded the apron and has eaten into the dam foundation. In the second case with dam construction at Tala Hydroelectric Project in Bhutan, sudden overflow of river during the construction stage of dam had led to development of three major cracks across the dam blocks. This was ascribed to adiabatic cooling effect of concrete blocks overlain by chilled water flow. Non-destructive evaluation of rock mass condition in the defect regime by the borehole GPR survey helped in arriving at the crux so as to formulate appropriate restoration plan.

  • PDF

Electrical Resistivity Imaging for Upper Layer of Shield TBM Tunnel Ceiling (쉴드 TBM터널 상부 지반 연약대 전기탐사)

  • Jung, Hyun-Key;Park, Chul-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.401-408
    • /
    • 2005
  • Recently shield TBM tunnellings are being applied to subway construction in Korean cities. Generally these kinds of tunnellings have the problems in the stability of ground such as subsidence because urban subway is constructed in the shallow depth. A sinkhole occurred on the road just above the tunnel during tunneling in Kwangju, so a survey for upper layer of the tunnel was needed. But conventional Ground Probing Radar can't be applicable due to the presence of steel-mesh screen in the shield segment, so no existent geophysical method is applicable in this site. Because the outer surface of each shield segment is electrically insulated, dipole-dipole resistivity method which is popular in engineering site investigation, was tried to this survey for the first time. Specially manufactured flexible ring-type electrodes were installed into the grouting holes at an interval of 2.4 m on the ceiling. The K-Ohm II system which has been developed by KIGAM and tested successfully in many sites, was used in this site. The system consists of 1000Volt-1Ampere constant-current transmitter, optically isolated 24 bit sigma-delta A/D conversion receiver - maximum 12 channel simultaneous measurements, and graphical automatic acquisition software for easy data quality check in real time. Borehole camera logging with circular white LED lighting was also done to investigate the state of the layer. Measured resistivity data lack of some stations due to failing opening lids of holes, shows general high-low trend well. The dipole-dipole resistivity inversion results discriminate (1) one approximately 4 meter diameter cavity (grouted but incompletely hardened, so low resistivity - less than $30{\Omega}m$), (2) weak zone (100-200${\Omega}m$), and (3) hard zone (high resistivity - more than 1000${\Omega}m$) very well for the distance of 320 meters. The 2-D inversion neglects slight absolute 3-D effect, but we can get satisfactory and useful information. Acquired resistivity section and video tapes by borehole camera logging will be reserved and reused if some problem occurs in this site in the future.

  • PDF

Development of 3D Underground Information Construction and Visualization System Based on IUGIM (지하공간통합지도 기반 3차원 지하정보 구축 및 가시화시스템 개발)

  • Kang, Kyung Nam;Kim, Wooram;Hwang, Seung Hyun;An, Joon Sang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.497-505
    • /
    • 2021
  • Due to recent underground space accidents, are a frequent occurence in Korea, the government established the basic plan for the construction of the IUGIM (Integrated Underground Geospatial Information Map) in 2015 as a measure for safety management of underground spaces. The development of IUGIM was partially completed as of 2021. The underground space management entity and related organizations are utilizing it. This study is being carried out as part of a plan to improve the usability of IUGIM, and to build a visualization system that compares real-time field data with stored data. A system, equipped with a visualization function for borehole data and 6 types of underground facilities built and managed on IUGIM; a tool capable of comparative analysis with real-time data measured in the field, is being built. The 6 types of underground facilities are water supply pipe, sewage pipe, power pipe, gas pipe, communication pipe, and heating pipe. The completed system was demonstrated at three locations in Seocho-gu, Gangnam-gu in Seoul. The field demonstration was carried out by accessing the mobile center and downloading IUGIM data, visualizing IUGIM data (surface creation, borehole information, underground facilities), and visualizing the GPR(Ground Penetrating Radar)-based data acquired at the field. As a result of the empirical results of IUGIM data and GPR-based field data, it was judged to be suitable. As a result of this study, it is judged that it can be helpful for safe construction at the excavation site.