• Title/Summary/Keyword: Borehole logging

Search Result 107, Processing Time 0.02 seconds

Simulation of eccentricity effects on short- and long-normal logging measurements using a Fourier-hp-finite-element method (Self-adaptive hp 유한요소법을 이용한 단.장노말 전기검층에서 손데의 편향 효과 수치모델링)

  • Nam, Myung-Jin;Pardo, David;Torres-Verdin, Carlos;Hwang, Se-Ho;Park, Kwon-Gyu;Lee, Chang-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.118-127
    • /
    • 2010
  • Resistivity logging instruments are designed to measure the electrical resistivity of a formation, and this can be directly interpreted to provide a water-saturation profile. However, resistivity logs are sensitive to borehole and shoulder-bed effects, which often result in misinterpretation of the results. These effects are emphasised more in the presence of tool eccentricity. For precise interpretation of short- and long-normal logging measurements in the presence of tool eccentricity, we simulate and analyse eccentricity effects by combining the use of a Fourier series expansion in a new system of coordinates with a 2D goal-oriented high-order self-adaptive hp finite-element refinement strategy, where h denotes the element size and p the polynomial order of approximation within each element. The algorithm automatically performs local mesh refinement to construct an optimal grid for the problem under consideration. In addition, the proper combination of h and p refinements produces highly accurate simulations even in the presence of high electrical resistivity contrasts. Numerical results demonstrate that our algorithm provides highly accurate and reliable simulation results. Eccentricity effects are more noticeable when the borehole is large or resistive, or when the formation is highly conductive.

Delineation of Geological Weak Zones in an Area of Small-scale Landslides Using Correlation between Electrical Resistivity, Bore, and Well-logging Data (전기비저항 및 시추·검층자료의 상관해석을 통한 소규모 산사태 지역의 지질 연약대 파악)

  • Lee, Sun-Joong;Kang, Yu-Gyeong;Lee, Cheol-Hee;Jeon, Su-In;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.31-42
    • /
    • 2020
  • Electrical resistivity and downhole seismic surveys were conducted together with bore investigations and well-logging to examine subsurface structures in small-scale landslides at Sinjindo-ri, Geunheung-myeon, Taean-gun, Chungcheongnam-do, Republic of Korea in 2014. On the basis of the low N-values at depths of 5~7 m in borehole BH-2, downhole seismic and electrical dipole-dipole resistivity surveys were performed to delineate geological weak zones. The low-resistivity zones (<150 Ω·m) measure ~8 m in thickness and show a close depth correspondence to weathered soils consisting mainly of silty clays as identified from the bore investigations and well-logging data. Compared with weak zones in borehole BH-1, weak zones in BH-2 are characterized by lower densities (1.6~1.8 g/㎤) and resistivities (<150 Ω·m) and greater variation in Poisson's ratio. These observations can be explained by the presence of wet silty clays rich in weathered soil material that have resulted from heavy rainfall and rises in groundwater level. Downslope movements are probably caused by the sliding of wet clay that acts to reduce the strength of the weathered soil.

Feasibility of Hydraulic Fracturing for Securing Additional Saline Groundwater in the Land-based Aquaculture Farm (양식장 용수 추가 확보를 위한 수압파쇄 적용성 평가)

  • Lee, Byung Sun;Kim, Young In;Park, Hak Yun;Cho, Jung Hwan;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.34-42
    • /
    • 2015
  • Feasibility tests for the hydraulic fracturing were conducted in order to secure additional saline groundwater for irrigating to the land-based aquaculture farm. Two boreholes were placed to the aquaculture farm A and B, respectively. A hydraulic fracturing using single packer was applied to major fracture zones within two boreholes. To identify effects of hydraulic fracturing on securing additional saline groundwater, some selective methods including well logging methods, pumping tests, and groundwater quality analysis were commonly applied to the boreholes before and after the hydraulic fracturing. Enlarging/creating fracture zones, increasing water contents in bedrock near boreholes, and increasing transmissivity were observed after the hydraulic fracturing. Even though the hydraulic fracturing could be an alternative to secure additional saline groundwater to the land-based aquaculture farm, salinity of the groundwater did not meet optimal thresholds for each fingerling in two farms: Fresh submarine groundwater discharge flowed the more into borehole of the farm A that resulted in decreasing a salinity value. Increased saline groundwater quantity in the borehole of the farm B rarely affect to the salinity. Although salinity problem of groundwater limited its direct use for the farms, the mixing with seawater could be effectively used for the fingerlings during the early stage. A horizontal radial collector well placed in the alluvial layer could be an alternative for the farms as well.

Logging for Diametric Variation of Granular Compaction Pile Using Crosshole Seismic Tests (크로스홀 탄성파 시험을 이용한 쇄석다짐말뚝의 시공직경 검측)

  • Park, Chul-Soo;Jung, Jae-Woo;Kim, Hak-Sung;Kim, Eun-Jung;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1415-1426
    • /
    • 2008
  • Stone columns, locally called "GCP (granular compaction pile)" can be used to improve strength and resistance against lateral movement of a foundation soil like rigid piles and piers. Also installation of such a discrete column facilitates drainage, and densifies and reinforces the soil in the sense of ground improvement. The integrity of the GCP has been indirectly controlled with the records of each batch including depth and the quantity of stone filled. An integrity testing was attempted using crosshole S-wave logging. The method is conceptionally same as the crosshole sonic logging (CSL) for drilled piers. The only and critical difference is that S-wave should be used in the logging, because P-wave velocity of the stone column is less than that of ground water. The crosshole sonic logger does not have the capability to measure S-wave propagating through the skeleton of crushed stone. An electro-mechanical source, which can generate either P- or SH-waves, and a 1-D geophone were used to measure SH-waves. Two 76mm diameter cased boreholes were installed 1 meter apart across the nominal 700mm diameter stone column. At every 10cm of depth, shear wave was measured across the stone column. One more borehole was also installed 1 meter outward from the one of the above boreholes to measure the shear wave profile of the surrounding soil. The diametric variation of the stone column with respect to depth was evaluated from the shear wave arrival times across the stone column, and shear wave velocities of crushed stone and surrounding soil. The volume calculated with these variational diameters is very close to the actual quantity of the stone filled.

  • PDF

Analysis of Scale and Shape of Limestone Cavities using Borehole Drilling and Geophysical Investigations (시추 및 물리탐사를 이용한 석회암 공동의 분포 규모 분석)

  • Song, Gyu-Jin;Yun, Hyun-Seok;Jang, Il-Ho;Choi, Yong-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.251-263
    • /
    • 2015
  • Geological mapping, borehole drilling, electrical resistivity, and seismic tomography surveys were conducted in order to map underground cavities and better understand the mechanisms driving subsidence in a limestone region in Korea. Limestone outcrops in the study area generally alternate between calcite-rich and calcite-poor rock. The results reveal that in areas experiencing subsidence, cavities occur mainly around soil-rock boundaries at depths of 7~14 m. These results are based on comparative analyses of electrical resistivity, seismic tomography, and borehole logging data. The volumes of the cavities are relatively small in a range of 558~835 ㎥ and they have a shape typical of suffosion sinkholes, which are typically found where sandy soils overlie bedrock cavities.

Borehole radar survey to explore limestone cavities for the construction of a highway bridge

  • Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.80-87
    • /
    • 2004
  • During excavation work for the construction of a highway bridge in a limestone area in Korea, several cavities were found, and construction work was stopped temporarily. Cavities under the bridge piers might seriously threaten the safety of the planned bridge, because they could lead to excessive subsidence and differential settlement of the pier foundations. In order to establish a method for reinforcement of the pier foundations, borehole radar reflection and tomography surveys were carried out, to locate cavities under the planned pier locations and to determine their sizes where they exist. Since travel time data from the crosshole radar survey showed anisotropy, we applied an anisotropic tomography inversion algorithm assuming heterogeneous elliptic anisotropy, in order to reconstruct three kinds of tomograms: tomograms of maximum and minimum velocities, and of the direction of the symmetry axis. The distribution of maximum velocity matched core logging results better than that of the minimum velocity. The degree of anisotropy, defined by the normalized difference between maximum and minimum velocities, was helpful in deciding whether an anomalous zone in a tomogram was a cavity or not. By careful examination of borehole radar reflection and tomography images, the spatial distributions of cavities were delineated, and most of them were interpreted as being filled with clay and/or water. All the interpretation results implied that two faults imaged clearly by a DC resistivity survey were among the most important factors controlling the groundwater movement in the survey area, and therefore were closely related to the development of cavities. The method of reinforcement of the pier foundations was based on the interpretation results, and the results were confirmed when construction work was resumed.

Principles and application of DC resistivity tomography and borehole radar survey. (전기비저항 토모그래피와 시추공 레이다 탐사의 원리 및 응용)

  • Kim Jung-Ho;Yi Myeong-Jong;Cho Seong-Jun;Song Yoon-Ho;Chung Seung-Hwan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.92-116
    • /
    • 1999
  • Tomographic approaches to image underground structure using electrical properties, can be divided into DC resistivity, electromagnetic, and radar tomography, based on the operating frequency. DC resistivity and radar tomography methods have been recently applied to site investigation for engineering purpose in Korea. This paper review these two tomography methods, through the case histories acquired in Korea. As another method of borehole radar survey, borehole radar reflection method is included, and its inherent problem and solution are discussed, how to find the azimuth angle of reflector using direction-finding-antenna. Since the velocity anisotropy of radar wave has been commonly encountered in field data, anisotropic radar tomography is discussed in this paper. In DC resistivity tomography, two subjects are focussed, electrode arrays, and borehole effect owing to the conductive fluid in borehole. Using the numerical modeling data, various kinds of electrode ways are compared, and borehole effect is illustrated. Most of the case histories presented in this paper are compared with known geology, core logging data, and/or Televiewer images.

  • PDF

Televiewer에서 관찰되는 단열특성과 수리전도도와의 상관관계 분석

  • Park Gyeong-U;Bae Dae-Seok;Kim Gyeong-Su;Go Yong-Gwon
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.284-287
    • /
    • 2005
  • The flow of groundwater in fractured medium is related to the geometric characteristics of the fracture system. And a fracture aperture and a fracture density are considered as important factor concerning the permeability. Data acquisition of the properties of fracture such as aperture and density is so difficult and has uncertainty. We also cannot know the fracture characteristics through the in-situ tests. We usually obtain the fracture information from a ultrasonic scan logging or borehole television indirectly. Using the deduced results, we can make the fracture system and simulate the groundwater flow and solute transport in the crystalline rock. This study aimed to analyze the correlation between the properties of fracture and hydraulic conductivities obtained at the same interval. The properties of fracture are examined by acoustic televiwer and hydraulic conductivities are obtained by constant Pressure injection test. The distributioin of fracture width and fracture frequency shows the log-normal probability plot. And, Results of correlation analysis explain that opened type fractures have proper relation with hydraulic conductivity. But, as though there are semi-opened type fractures or closed type fractures, those have the permeable structure.

  • PDF

An Aanalysis of the Geotechnical Characteristics of the Uncemented Breccia at Kyeongju District (경주 지역 미고결 각력층의 공학적 특성 분석)

  • Yun Sung-Hak;Lee Kun;Sha Sang-Ho;Park Sei-Joo;Ra Il-woong;Cheon Yoon-chul;Cho Nam Jun
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.667-672
    • /
    • 2005
  • The uncemented breccia consisted of conglomerate and breccia, which are not originated from volcanic clastics, shows wide variation of engineering properties depending on the characteristics of matrix of the uncemented breccia. These uncemented breccia have breccia and matrix irregularly distributed according to their depth and position. Clay minerals are also included in the matrix of these uncemented breccia, so they are expected to show expansive behavior and weakness against weathering process. In this study, the volumetric ratio of breccia on the cores had been calculated using digital image processing technique (performed on recovered core box and their sections). The 3-axial compressional strength test had been done with a shaping of rapid cooling method, and the shear strength (c, ${\phi}$) of uncemented breccia due to the breccia content had been calculated by applying BIMROCK model curve suggested by Goodman. A reliable analysis on the engineering properties of uncemented breccia had been also possible by using borehole density logging and borehole loading test for the accurate determination of the unit weight and the deformation constants deformation modulus.

  • PDF

Fresh Water Injection Test to Mitigate Seawater Intrusion and Geophysical Monitoring in Coastal Area (해수침투 저감을 위한 담수주입시험 및 지구물리 모니터링)

  • Park, Kwon-Gyu;Shin, Je-Hyun;Hwang, Se-Ho;Park, In-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.353-360
    • /
    • 2007
  • We practiced fresh water injection test to identify its applibility as a method of seawater intrusion mitigation technique, and monitored the change of borehole fluid conductivity and the behavior of injected fresh water using borehole multichannel electrical conductivity monitoring and well-logging, and DC resistivity and SP monitoring at the surface. Well-logging and multichannel EC monitoring showed the decrease of fluid conductivity due to fresh water injection. We note that such an injection effect lasts more than several month which means the applibility of fresh water injection as a seawater intrusion control technique. Although SP monitoring did not show meaningful results because of weather condition during monitoring and the defects of electrodes due to long operation time, DC resistivity monitoring showed its effectiveness and applicability as a monitoring and assessment techniques of injection test by means of imaging the behavior and the front of fresh water body in terms of the increase of resistivity with reasonable resolution. In conclusion, we note that geophysical techniques can be an effective method of monitoring and evaluation of fresh water injection test, and expect that fresh water injection may be an practical method for the mitigation of seawater intrusion when applied with optimal design of injection well distribution and injection rate based on geophysical evaluation.