• Title/Summary/Keyword: Borehole Televiewer

Search Result 24, Processing Time 0.021 seconds

Program Development to Evaluate Permeability Tensor of Fractured Media Using Borehole Televiewer and BIPS Images and an Assessment of Feasibility of the Program on Field Sites (시추공 텔리뷰어 및 BIPS의 영상자료 해석을 통한 파쇄매질의 투수율텐서 계산 프로그램 개발 및 현장 적용성 평가)

  • 구민호;이동우;원경식
    • The Journal of Engineering Geology
    • /
    • v.9 no.3
    • /
    • pp.187-206
    • /
    • 1999
  • A computer program to numerically predict the permeability tensor of fractured rocks is developed using information on discontinuities which Borehole Televiewer and Borehole Image Processing System (BIPS) provide. It uses orientation and thickness of a large number of discontinuities as input data, and calculates relative values of the 9 elements consisting of the permeability tensor by the formulation based on the EPM model, which regards a fractured rock as a homogeneous, anisotropic porous medium. In order to assess feasibility of the program on field sites, the numerically calculated tensor was obtained using BIPS logs and compared to the results of pumping test conducted in the boreholes of the study area. The degree of horizontal anisotropy and the direction of maximum horizontal permeability are 2.8 and $N77^{\circ}CE$, respectively, determined from the pumping test data, while 3.0 and $N63^{\circ}CE$ from the numerical analysis by the developed program. Disagreement between two analyses, especially for the principal direction of anisotropy, seems to be caused by problems in analyzing the pumping test data, in applicability of the EPM model and the cubic law, and in simplified relationship between the crack size and aperture. Aside from these problems, consideration of hydraulic parameters characterizing roughness of cracks and infilling materials seems to be required to improve feasibility of the proposed program. Three-dimensional assessment of its feasibility on field sites can be accomplished by conducting a series of cross-hole packer tests consisting of an injecting well and a monitoring well at close distance.

  • PDF

Derivation of rock parameters from Televiewer data (텔레뷰어에 의한 토목설계 매개변수의 산출)

  • Kim Jung-Yul;Kim Yoo-Sung
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.137-155
    • /
    • 1999
  • Recently, Televiewer(Borehole Acoustic Scanner(Televiewer)) has come to be widely used specially for the general engineering construction design. The Televiewer tool using a focussed acoustic beam is to detect the amplitude and traveltime of each reflected acoustic signal at the wall, resulting in the amplitude- and traveltime image respectively. Fractures can be well detected, because they easily scatter the acoustic energy due to the highly narrow beam. In addition, the drilling work will rough the borehole wall so that the acoustic energy can be scattered simply due to the roughness of the wall. Thus, the amplitude level can be directed associated with the elastic properties(impedance) and the hardness of the rock as well. Meanwhile, the traveltime image provides an information about the borehole shape and can be converted to a high precision 3D caliper log(max. 288 arms). In this paper, based on the high resolution of Televiewer images, general evaluation methods are illustrated to derive very reliable rock parameters.

  • PDF

Seepage Velocity and Borehole Image of Bottom Protection Layer Filled with Dredged Sand in Sea Dyke (준설해사로 충진된 바닥보호공의 형상 및 침투유속평가)

  • Oh, Young-In;Kang, Byung-Yoon;Kim, Ki-Nyeon;Cho, Young-Gwon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1727-1734
    • /
    • 2008
  • After the final closure of sea dyke, seepage behaviour of embankment is highly changed by variation of water head different between tide wave and controlled water level at fresh lake. Especially, the seepage behaviour of bottom protection layer of final closure section is more important factor for structural and functional stability of sea dyke, because of the bottom protection layer of final closure section is penetrated sea side to fresh lake. Even though bottom protection layer was filled with dredged fine sand, it has a high permeability. In this paper, mainly described about the seepage velocity and borehole image of bottom protection layer filled with dredged sand after final closure. Various in-situ tests such as BIPS (Borehole Image Processing System) and ABI (Acoustic Borehole Imager) survey, wave velocity measuring, and color tracer survey were conducted to evaluate the seepage behavior of bottom protection layer. Based on the in-situ tests, the bottom protection layer of final closure section was almost filled with dredged sand which is slightly coarse grain sand and there have sea water flow by water head different between tide wave and controlled water level at fresh lake. Also, comply with tracer survey results, the sea water flow path was not exist or generated in the bottom protection layer. However, because of this result not only short term survey but also just one test borehole survey results, additional long term and other borehole tests are needed.

  • PDF

Evaluation of fracture density distribution for the design of grouting works in fractured rocks (그라우팅 설계를 위한 절리밀도분포 산출법 개발)

  • 김중열;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.627-634
    • /
    • 2002
  • To facilitate a drilling plan for grouting in fractured rock, an algorithm of practical use associated with a new term “fracture density distribution”or“fracture tomogram”is developed. It is well known that Televiewer data(amplitude and traveltime image) provide detailed information about not only dip and dip direction of each fracture but also its aperture size estimated by an appropriate evaluation algorithm. A selected plane section of medium around a borehole or the cross section between two boreholes is discretized into a two dimensional grid of cells(rectangular elements). As each elongated(straight) fracture passes through the cells, the corresponding aperture size value is successively summed up in each cell, depending on the fracture length segment. In this, the fracture lines can be determined by intersecting of each fracture plane with the selected plane section. If the fracture line does not pass through a particular grid element, the segment length is set to zero. The final value(aperture size value of each cell) derived from all the detected fractures constitutes the fracture density distribution of the selected plane section, Field examples are illustrated, which will prove the benefit of the suggested algorithm for several kinds of grouting works.

  • PDF

Delineation of the Slip Weak Zone of Land Creeping with Integrated Geophysical Methods and Slope Stability Analysis (복합 지구물리탐사와 사면 안정해석 자료를 이용한 땅밀림 지역의 활동연약대 파악)

  • Lee, Sun-Joong;Kim, Ji-Soo;Kim, Kwan-Soo;Kwon, Il-Ryong
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.289-302
    • /
    • 2020
  • To determine the shallow subsurface structure and sliding surface of land creeping in 2016 at Hadong-gun, Gyeongsangnam-do, geophysical surveys (electric resistivity, and refraction seismic methods, borehole televiewer) and slope stability analysis were conducted. The subsurface structure delineated with borehole lithologies and seismic velocity structures provided the information that the sediment layer on the top of the slope was rather as thick as 20 m and the underlying weathered rock (anorthosite) was thinner than 1 m. Based on the tension cracks observed during the geological mapping, televiewer scanning was performed at the borehole BH-2 and detected the intensive fracture zones at the ground-water level, associated with the slip weak zones mapped in dipole-dipole electrical resistivity section. Downslope sliding and slightly upward pushing at the apex of high resistive bedrock explains the curved slip plane of the land creeping. Such a convex structure might play a role of natural toe abutment for preventing the downward development of slip weak zones. In slope stability analysis, the safety factors of the slip weak zone are calculated with varying the groundwater levels for dry and rainy seasons and the downslope is founded to be unstable with safety factor of 0.89 due to fully saturated material in rainy season.

Physical Properties of and Joint Distribution Within the Cheongju Granitic Mass, as Assessed from Drill-core and Geophysical Well-logging Data (시추 및 물리검층자료의 상관해석을 통한 청주화강암체의 물성 정보 및 절리 분포)

  • Lee, Sun-Jung;Lee, Cheol-Hee;Jang, Hyung-Su;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.15-24
    • /
    • 2011
  • To clarify the distribution of joints and fracture zones in the Cheongju granitic mass, we analyzed drill-core and geophysical well-logging data obtained at two boreholes located 30 m from each other. Lithological properties were investigated from the drill-core data and the samples were classified based on the rock mass rating (RMR) and on rock quality designation (RQD). Subsurface discontinuities within soft and hard rocks were examined by geophysical well-logging and cross-hole seismic tomography. The velocity structures constructed from seismic tomography are well correlated with the profile of bedrock depth, previously mapped from a seismic refraction survey. Dynamic elastic moduli, obtained from full waveform sonic and ${\gamma}-{\gamma}$ logging, were interrelated with P-wave velocities to investigate the dynamic properties of the rock mass. Compared with the correlation graph between elastic moduli and velocities for hard rock at borehole BH-1, the correlation points for BH-2 data showed a wide scatter. These scattered points reflect the greater abundance of joints and fractures near borehole BH-2. This interpretation is supported by observations by acoustic televiewer (ATV) and optical televiewer (OTV) image loggings.

Principles and application of DC resistivity tomography and borehole radar survey. (전기비저항 토모그래피와 시추공 레이다 탐사의 원리 및 응용)

  • Kim Jung-Ho;Yi Myeong-Jong;Cho Seong-Jun;Song Yoon-Ho;Chung Seung-Hwan
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.92-116
    • /
    • 1999
  • Tomographic approaches to image underground structure using electrical properties, can be divided into DC resistivity, electromagnetic, and radar tomography, based on the operating frequency. DC resistivity and radar tomography methods have been recently applied to site investigation for engineering purpose in Korea. This paper review these two tomography methods, through the case histories acquired in Korea. As another method of borehole radar survey, borehole radar reflection method is included, and its inherent problem and solution are discussed, how to find the azimuth angle of reflector using direction-finding-antenna. Since the velocity anisotropy of radar wave has been commonly encountered in field data, anisotropic radar tomography is discussed in this paper. In DC resistivity tomography, two subjects are focussed, electrode arrays, and borehole effect owing to the conductive fluid in borehole. Using the numerical modeling data, various kinds of electrode ways are compared, and borehole effect is illustrated. Most of the case histories presented in this paper are compared with known geology, core logging data, and/or Televiewer images.

  • PDF

3D imaging of fracture aperture density distribution for the design and assessment of grouting works (절리 암반내 그라우팅 설계 및 성과 판단을 위한 절리틈새 밀도 분포의 3차원 영상화 연구)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Nam, Ji-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.113-120
    • /
    • 2004
  • Grouting works in fractured rocks have been performed to reinforce the underground and/or to block ground water flow at the foundation site of dam, bridge and so on. For the efficient grouting design, a prior knowledge of the fracture pattern of underground area to be grouted in very important. For the practical use, aperture sizes of open fractures that will be filled up with grouting materials will be kind of valuable information. Thus, the main purpose of this study is to develop a new technique (so called "GenFT") enable to form a three dimensional image of fracture aperture density distribution from Televiewer data. For this, the study is to focus on dealing with (1) estimating aperture size of each fracture automatically from Televiewer time image, (2) mapping extension of fracture planes on a given section, (3) evaluating aperture density distribution on the section by using both aperture size and fracture face mapping result of each fracture, (4) developing an algorithm that can transfer the previous results to any arbitrary(vertical and/or horizontal) section around the borehole. Since 3D imaging means "a strategy used to form an image of arbitrarily subdivided 2D sections with aperture density distribution", it will help avoid ambiguities of fracture pattern interpretation and hence will be of practical use not only for the design and assessment of grouting works but also for various engineering works. Examples of fields experiments are illustrated. It would seem that this technique might lead to reflecting future trend in underground survey.

  • PDF

Characterizing Fracture System Change at Boreholes in a Coastal Area in Korea for Monitoring Earthquake (지진감시를 위한 국내 해안지역 시추공 내 단열계 변화 특성)

  • Cheong, Jae-Yeol;Hamm, Se-Yeong;Ok, Soon-Il;Cho, Hyunjin;Kim, Soo-Gin;Yun, Sul-Min
    • The Journal of Engineering Geology
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • Earthquake can change underground stress condition around the hypocenter and affect the fracture systems of the rocks. In Korea, the M5.8 Gyeongju earthquake on September 12, 2016 and M5.4 Pohang earthquake on November 15, 2017 occurred inside the Yangsan fault zone and possibly affected the fracture systems in the Yangsan fault zone and nearby rock masses. In this study, the characteristics of the fracture system (fracture orientation, number of the fractures, fracture spacing and aperture, dip angle, fracture density along depth, and relative rock strength) of the rocks in the low/intermediate level radioactive waste repository site located in the coastal area of the East Sea are analyzed by the impact of the Gyeongju and Pohang earthquakes using acoustic televiewer data taken from the boreholes at the radioactive waste repository site in 2005 and 2018. As a result of acoustic televiewer logging analysis, the fracture numbers, fracture aperture, and fracture density along depth overall increased in 2018 comparing to those in 2005. This increase tendency may be due to changes in the fracture system due to the impact of the earthquakes, or due to weathering of the wall of the boreholes for a long period longer than 10 years after the installation of the boreholes in 2005. In the borehole KB-14, on the whole, the orientation of the fractures and the average fracture spacing are slightly different between 2005 and 2018, while dip angle and relative rock strength in 2005 and 2018 are similar each other.

Televiewer에서 관찰되는 단열특성과 수리전도도와의 상관관계 분석

  • Park Gyeong-U;Bae Dae-Seok;Kim Gyeong-Su;Go Yong-Gwon
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.284-287
    • /
    • 2005
  • The flow of groundwater in fractured medium is related to the geometric characteristics of the fracture system. And a fracture aperture and a fracture density are considered as important factor concerning the permeability. Data acquisition of the properties of fracture such as aperture and density is so difficult and has uncertainty. We also cannot know the fracture characteristics through the in-situ tests. We usually obtain the fracture information from a ultrasonic scan logging or borehole television indirectly. Using the deduced results, we can make the fracture system and simulate the groundwater flow and solute transport in the crystalline rock. This study aimed to analyze the correlation between the properties of fracture and hydraulic conductivities obtained at the same interval. The properties of fracture are examined by acoustic televiwer and hydraulic conductivities are obtained by constant Pressure injection test. The distributioin of fracture width and fracture frequency shows the log-normal probability plot. And, Results of correlation analysis explain that opened type fractures have proper relation with hydraulic conductivity. But, as though there are semi-opened type fractures or closed type fractures, those have the permeable structure.

  • PDF