이 논문에서는 GARCH 모형에서 변환-역변환 방법을 통해 예측값을 추정할 때 발생하는 편향을 줄이기 위한 방법을 소개한다. 모수적 붓스트랩을 활용하여 본래 척도에서의 최소평균제곱오차 예측값인 조건부 기대값을 계산한다. KOSPI와 KOSDAQ 수익률 분석을 통해 제안한 방법이 편향을 줄여주는 것을 확인하였다.
유해성 적조생물 Cochlodinium polykrikoides/Gyrodinium aurelum을 포함한 43 종류의 와편조류를 대상으로 SSU 부위 유전자를 분석했다. 유전자 염기서열에 의거한 상호 계통수는 parisomny, distance, maxium 방법으로 실행했다. Noctilura scintillans, Gonyaulax spinifera와 Crythecodinium cohnii 종들은 와편모조류 중 가장 유전적으로 먼 것으로 보였다. Alexandrium과 Symbiodinium 종간의 bootstrap는 70% 이상의 상호 단일 계통도를 보인 반면에, Gymnodinium과 Gyrodinium은 근립절약계수와 최대 유사도 방법에서 다형 계통도를 나타내었다. Gyroddinium aurelum과 G. dorsum/G. galathenum의 유전적 분화율은 7.4% (45 bp) 였고, G. aurelum과 G. mikimotoi 상호간에는 0.9% (5bp) 밖에 나타나지 않았다. 또한 C. polykrikoides와 G. aurelum도 5.2% (31bp)로 낮은 유전적 분화율을 보였다. 계통도를 분석한 결과 G. aureolum과 C. polykrikoides는 Gyrodinium 보다 Gymnodinim 속에 훨씬 더 근접하게 나타났다.
To evaluate uncertainty and risk in biological reference points, we applied a bootstrapping method and a Bayesian procedure to estimate the related confidence intervals. Here we provide an example of the maximum sustainable yield (MSY) of turban shell, Batillus cornutus, estimated by the Schaefer and Fox models. Fitting the time series of catch and effort from 1968 to 2006 showed that the Fox model performs better than the Schaefer model. The estimated MSY and its bootstrap percentile confidence interval (CI) at ${\alpha}=0.05$ were 1,680 (1,420-1,950) tons for the Fox model and 2,170 (1,860-2,500) tons for the Schaefer model. The CIs estimated by the Bayesian approach gave similar ranges: 1,710 (1,450-2,000) tons for the Fox model and 2,230 (1,760-2,930) tons for the Schaefer model. Because uncertainty in effort and catch data is believed to be greater for earlier years, we evaluated the influence of sequentially excluding old data points by varying the first year of the time series from 1968 to 1992 to run 'backward' bootstrap resampling. The results showed that the means and upper 2.5% confidence limit (CL) of MSY varied greatly depending on the first year chosen whereas the lower 2.5% CL was robust against the arbitrary selection of data, especially for the Schaefer model. We demonstrated that the bootstrap and Bayesian approach could be useful in precautionary fisheries management, and we advise that the lower 2.5% CL derived by the Fox model is robust and a better biological reference point for the turban shells of Jeju Island.
한국산 Geranium(쥐손이풀속) 16분류군과 3개의 군외군을 대상으로 진화와 유연관계를 평가하기 위하여 nuclear ribosomal DNA 중 internal transcribed spacer (ITS) 구간에 대한 계통 분류학적 분석을 수행하였다. 계통 분류학적 연구들은 bootstrapping, jackknifing을 포함한 parsimony 방법과 neighbor-joining 방법을 사용하였다. 그 결과 한국산 쥐손이풀속은 단계통군을 형성하였다. Parsimony tree에서 한라이질풀은 가장 기부에 위치하였으며 Erianthum group은 높은 지지도에 의해 하나의 분계조를 형성하였다(100% bootstrap과 jackknife values). Krameri group인 산쥐손이는 Palustre group인 섬쥐손이와 가까이 위치하였으나 그 지지도는 매우 낮았고(37% bootstrap과 44% jackknife values) strict tree에서는 clade가 붕괴되었다. Wilfordii group에 분류되었던 큰세잎쥐손이는 Koreanum group과 가까이 위치하였고, Sibiricum group인 쥐손이풀은 Krameri group인 삼쥐손이와 가까이 위치하였으며 또한 이 두 종은 역시 Krameri group인 선이질풀과 자매군을 이루었다. Wilfordii group인 좀쥐손이와 세잎쥐손이는 Sibiricum group인 삼이질풀, 이질풀과 가까이 위치하였다. 이와 같은 결과는 많은 학자들에 의해 논란이 된 분류군들의 문제를 해결하는데 유용한 접근방법이라 생각되며, 전체 쥐손이풀속 수준에서의 계통분석에 유용한 도구로 이용될 수 있을 것으로 판단된다.
극치강우사상에 의한 설계 홍수량의 갑작스런 증 감은 홍수, 가뭄과 같은 기상학적 요인에 기인한 재난을 발생시킨다. 많은 연구자들은 보다 정확한 확률강우량의 예측과 유출량의 예측을 위해 많은 노력을 하고 있다. 본 연구에서는 강원도 강릉 강우관측소를 대상으로 강우-빈도곡선의 불확실성 분석을 수행하였다. 관측 자료의 수집에서 발생하는 불확실성을 최소화 하고자 ARMA 모형을 이용하여 합성강우자료를 구축하였으며, 발생된 합성강우량을 Bootstrap 방법을 이용하여 대규모의 자료집단으로 발생시킴으로서 신뢰구간에 사용할 자료집단을 발생시켰다. 본 연구에서는 극치강우사상에 적합한 것으로 알려진 Gumbel 분포와 일반극치 분포(GEV 분포) 모형을 선정하였으며 각 확률분포모형에 대한 매개변수 추정방법으로 최우도법, 확률가중모멘트법 그리고 베이지안 추론방법을 사용하여 각 매개변수의 최후 추정치를 산정하였다. 또한 원 자료를 이용하여 최우도법, 확률가중모멘트법 그리고 베이지안 추론방법을 통해 매개변수를 산정 후 강우-빈도 곡선을 추정하여 합성강우자료의 Bootstrap 방법에 의해 발생된 자료로부터 산정한 강우-빈도 곡선의 신뢰구간과 비교함으로서 불확실성이 낮은 확률강우량을 산정할 수 있는 매개변수 추정방법을 평가하고자하였다.
Communications for Statistical Applications and Methods
/
제17권2호
/
pp.275-292
/
2010
동일 환자에게 적용된 2가지 진단검사의 정확성을 비교하기 위한 방법들 중에서 두개의 ROC곡선 아래 면적(AUC; Area Under Curve)의 차이는 주요한 잣대 중 하나이다. 본 연구에서는 AUC의 차이를 추정하는 방법으로 비모수적방법, 최대가능도법, 일반화추축량에 의한 방법, 붓스트랩방법의 4가지를 포함확률(coverage probability), 기대길이 (expected length) 측면에서 모의실험을 통하여 비교하였다.
순서쌍으로 주어진 자료 $(x_i, y_i), i=1,2,\cdots,n$ 들에 대한 독립변수와 관련된 추정은 회귀분석과는 달리 교정(calibration)이라고 불리워진다. 본 논문에서는 정규상 등과 같은 가정을 하지않고 비모수적인 커널방법을 이용하여 교정함수를 추정하고 추정된 교정함수의 붓스트랩 신뢰대를 이용한 독립변수의 구간추정을 제안하고자 한다. 교정과 커널방법에 대해 설명하였으며 독립변수의 추정에 대한 문헌적 고찰과 함께 붓스트랩 신뢰대에 대하여 첨언하였고 실제 자료를 통하여 다른방법과 비교, 분석하였다.
부산항 신항에서 측정한 14년 동안의 파랑자료를 이용하여 재현기간에 따른 설계파고와 신뢰구간을 추정 분석하였다. 극치분석에 사용한 함수는 Gumbel 함수와 Weibull 함수, Kernel 함수이며, 각각의 방법으로 추정한 설계파고의 신뢰구간을 Monte-Carlo 모의기법 중의 하나인 Bootstrap 방법으로 추정하였다. 설계파고의 추정 신뢰구간을 분석한 결과, 약 ${\pm}$10% 수준의 신뢰구간을 만족하기 위해서는 150년 이상의 자료가 필요한 것으로 파악되었다. 그리고 실질적으로 가능한 자료의 개수를 25~50개 정도(25~50년 동안의 추정자료)로 간주하는 경우, Type I 분포함수의 경우 허용오차가 ${\pm}$16~22% 정도이며, Type III 분포함수의 경우, ${\pm}$18~24% 정도로 파악되었다. 한편 비모수적 방법에 해당하는 Kernel 분포함수를 이용한 방법은 Type I과 III을 사용한 것에 비해 신뢰구간은 40% 이하 수준으로 우수한 결과를 보이는 반면, 설계파고는 1.2~1.6 m 정도 낮게 추정하는 결과를 보여주고 있다.
Communications for Statistical Applications and Methods
/
제15권6호
/
pp.977-991
/
2008
본 논문에서는 연속형 변수에 대한 결합확률분포를 추정하지 않고도 상호정보(MI) 추정량을 구할 수 있는 k-최근접이웃 기반방법에 대하여 연구하였다. 변수가 동일한 값들을 가지는 경우 k-최근접이웃을 구할 때 생기는 문제점을 해결하기 위하여 지터링(jittering)과 붓스트랩(bootstrap) 방법을 제안하였다. 몬테칼로 모의실험과 실제 데이터에 대한 실험을 수행한 결과, k=1과 같이 작은 값을 사용한 k-최근접이웃 기반방법에 의해 효율적인 MI 추정량을 구할 수 있었다. k-최근접이웃 기반방법은 연속형 설명변수, 범주형 또는 연속형인 목적변수 형태의 데이터에 적용할 수 있으며, 목적변수에 영향을 주는 중요한 설명변수의 순서를 구할 수 있을 뿐만 아니라 다차원에도 적용할 수 있기 때문에 중요변수의 집합을 구하는 변수 선택(feature subset selection) 문제에도 적용할 수 있다.
이 논문에서는 비선형 변환과 가능도 함수를 이용하여 다변량 자료의 정규성을 검정하는 방법에 대해 알아본다. 사용된 변환은 변환모수에 따라 여러 가지 형태를 가지는 변환족을 구성하는데 이 변환모수를 검정하여 자료의 정규성을 검정한다. 모수의 검정은 점수함수(score function)을 기초로 이루어지며 표본크기가 적은 경우에도 검정통계량의 분포를 유도하기 위한 모수적 붓스트랩 검정방법이 사용된다. 모의실험 결과 기존의 방법과 검정력을 비교하여 제안된 방법이 검정력이 높은 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.