• Title/Summary/Keyword: Booth

Search Result 251, Processing Time 0.026 seconds

An Architecture for $32{\times}32$ bit high speed parallel multiplier ($32{\times}32 $ 비트 고속 병렬 곱셈기 구조)

  • 김영민;조진호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.67-72
    • /
    • 1994
  • In this paper we suggest a 32 bit high speed parallel multiplier which plays an important role in digital signal processing. We employ a bit-pair recoding Booth algoritham that gurantees n/2 partial product terms, which uniformly handles the signed-operand case. While partial product terms are generated, a special method is suggested to reduce time delay by employing 1's complement instead of 2's complement. Later when partial products are added, the additional 1 bit's are packed in a single partial product term and added to in the parallel counter. Then 16 partial product terms are reduced to two summands by using successive parallel counters. Final multiplication value is obtained by a BLC adder. When this multiplier is simulated under 0.8$\mu$CMOS standard cell we obtain 30ns multiplier speed.

  • PDF

Design of High Performance 16bit Multiplier for Asynchronous Systems (비동기 시스템용 고성능 16비트 승산기 설계)

  • 김학윤;이유진;장미숙;최호용
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.356-359
    • /
    • 1999
  • A high performance 16bit multiplier for asynchronous systems has been designed using asynchronous design methodology. The 4-radix modified Booth algorithm, TSPC (true single phase clocking) registers, and modified 4-2 counters using DPTL (differential pass transistor logic) have been used in our multiplier. It is implemented in 0.65${\mu}{\textrm}{m}$ double-poly/double-metal CMOS technology by using 6616 transistors with core size of 1.4$\times$1.1$\textrm{mm}^2$. And our design results in a computation rate exceeding 60MHz at a supply voltage of 3.3V.

  • PDF

Area-time complexity analysis for optimal design of multibit recoding parallel multiplier (멀티비트 리코딩 병렬 승산기의 최적설계를 위한 면적-시간 복잡도 분석)

  • 김득경;신경욱;이용석;이문기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.5
    • /
    • pp.71-80
    • /
    • 1995
  • The usual approach for desinging a fast multiplier involves finding a way to quickly add up all the partial products, based on parital product recoding scheme and carry-save addition. This paper describes theoretical medels for area and time complexities of Multibit Reconding Paralle Multiplier (MRPM), which is a generalization of the modified Booth recoding scheme. Based on the proposed models, time performance, hardware requirements and area-time efficiency are analyzed in order to determine optimal recoding size for very large scale integration (VLSI) realization of the MRPM. Some simulation results show that the MRPM with large multiplier and multiplicand size has optimal area-time efficiency at the recoding size of 4-bit.

  • PDF

A Study on the Estimation of Human Damage Caused by the LP Gas Flame in Enclosure using Probit Model

  • Leem, Sa-Hwan;Huh, Yong-Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.3
    • /
    • pp.43-48
    • /
    • 2009
  • The energetic and environmental problems have been getting serious after the revolution of modern industry. Therefore, demand of gas as an eco-friendly energy source is increasing. With the demand of gas, the use of gas is also increased, so injury and loss of life by the fire have been increasing every year. Hence the influence on flame caused by Vapor Cloud Explosion in enclosure of experimental booth was calculated by using the API regulations. And the accident damage was estimated by applying the influence on the adjacent structures and people into the PROBIT model. According to the probit analysis, the spot which is 5meter away from the flame has nearly 100% of the damage probability by the first-degree burn, 27.8% of the damage probability by the second-degree burn and 14.5% of the death probability by the fire.

  • PDF

A Study on Estimation of Human Damage for Shock Wave by Vapor Cloud Explosion using Probit Model (Probit 모델에 의한 증기운폭발 충격파의 인체피해예측)

  • Leem, Sah-Wan;Huh, Yong-Jeong;Lee, Jong-Rark
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.936-941
    • /
    • 2007
  • This paper is on the influence of gas explosion caused by Vapor Cloud Explosion(VCE). Also, it is to understand the influence of the booth for explosion experiment which is installed to let the trainees for legal education which is managed by IGTT(Institute or Gas Technology Training) know the riskiness of explosion. In this study, the influence of explosion shock wave caused by VCE in enclosure was calculated by using the Hopkinson's scaling law and the accident damage was estimated by applying the influence on the adjacent human into the probit model. As a result of the damage estimation conducted by using the probit model, both the damage possibility of explosion overpressure to human 8 meters away and that of shock wave to hurt 15 meters away showed nothing.

Systolic Array Implementaion for 2-D IIR Digital Filter and Design of PE Cell (2-D IIR 디지탈필터의 시스토릭 어레이 실현 및 PE셀 설계)

  • 박노경;문대철;차균현
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.1E
    • /
    • pp.39-47
    • /
    • 1993
  • 2-Dimension IIR 디지털 필터를 시스토릭 어레이 구조로 실현하는 방법을 보였다. 시스토릭 어레이는 1-D IIR 디지털 필터로 부분 실현한 후 종속연결하여 구현하였다. 부분 실현한 시스토릭 어레이의 종속 연결은 신호 지연에 사용되는 요소를 감소 시킨다. 여기서 1-D 시스토릭 어레이는 local communication 접근에 의해 DG를 설계한후 SFG로의 사상을 통해 유도하였다. 유도된 구조는 매우 간단하며, 입력 샘플이 공급되어지면 매 샘플링 기간마다 새로운 출력을 얻는 매우 높은 데이터 처리율을 갖는다. 2-Dimension IIR 디지털 필터를 시스토릭 어레이로 실현함으로써 규칙적이고, modularity, local interconnection, 높은 농기형 다중처리의 특징을 갖기 때문에 VLSI 실현에 매우 적합하다. 또한 PE셀의 승산기 설계에서는 modified Booth's 알고리즘과 Ling's 알고리즘에 기초를 두고 고도의 병렬처리를 행할수 있도록 설계하였다.

  • PDF

A Low-Complexity 128-Point Mixed-Radix FFT Processor for MB-OFDM UWB Systems

  • Cho, Sang-In;Kang, Kyu-Min
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • In this paper, we present a fast Fourier transform (FFT) processor with four parallel data paths for multiband orthogonal frequency-division multiplexing ultra-wideband systems. The proposed 128-point FFT processor employs both a modified radix-$2^4$ algorithm and a radix-$2^3$ algorithm to significantly reduce the numbers of complex constant multipliers and complex booth multipliers. It also employs substructure-sharing multiplication units instead of constant multipliers to efficiently conduct multiplication operations with only addition and shift operations. The proposed FFT processor is implemented and tested using 0.18 ${\mu}m$ CMOS technology with a supply voltage of 1.8 V. The hardware- efficient 128-point FFT processor with four data streams can support a data processing rate of up to 1 Gsample/s while consuming 112 mW. The implementation results show that the proposed 128-point mixed-radix FFT architecture significantly reduces the hardware cost and power consumption in comparison to existing 128-point FFT architectures.

Time-Multiplexed FIR Filter Design Using Group CSD(GCSD) Multipliers (Group CSD(GCSD) 곱셈기를 이용한 Time-Multiplexed FIR 필터 설계)

  • Jeon, Chang-Ha;Seo, Dong-Hyun;Chung, Jin-Gyun;Kim, Yong-Eun;Lee, Chul-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.452-456
    • /
    • 2010
  • Multiplication is a fundamental arithmetic operation in many digital signal processing (DSP) and communication algorithms. The group CSD (GCSD) multiplier was recently proposed based on the variation of canonical signed digit (CSD) encoding and partial product sharing. This multiplier provides an efficient design when the multiplications are performed only with a few predetermined coefficients (e.g., FFT). In this paper, it is shown that, by exploiting the characteristics of the filter coefficients, GCSD multipliers can be used for the efficient implementation of time-multiplexed FIR filters.

An Optimized Hybrid Radix MAC Design (최적화된 4진/8진 혼합 MAC 설계)

  • 정진우;김승철;이용주;이용석
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.125-128
    • /
    • 2002
  • This paper is about a high-speed MAC (multiplier and accumulator) design applying radix-4 and radix-8 Booth's algorithm at the same time. The optimized hybrid radix design for high speed MAC has taken advantage of both a radix-4 and a radix-8 architectures. A radix-4 architecture meets high-speed, but it takes much more power and chip area than a radix-8 architecture. A radix-8 architecture needs less power and chip area than the other, but it has a bottleneck of generating three times the multiplicand problem. An optimized hybrid architecture performs tile radix-4 multiplication partially in parallel with the generation of three times the multiplicand for use of tile radix-8 multiplication. It reduces the concerned bit width of multiplier in radix-8 multiplication.

  • PDF