• Title/Summary/Keyword: Boosting algorithm

Search Result 172, Processing Time 0.029 seconds

An advanced machine learning technique to predict compressive strength of green concrete incorporating waste foundry sand

  • Danial Jahed Armaghani;Haleh Rasekh;Panagiotis G. Asteris
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.77-90
    • /
    • 2024
  • Waste foundry sand (WFS) is the waste product that cause environmental hazards. WFS can be used as a partial replacement of cement or fine aggregates in concrete. A database comprising 234 compressive strength tests of concrete fabricated with WFS is used. To construct the machine learning-based prediction models, the water-to-cement ratio, WFS replacement percentage, WFS-to-cement content ratio, and fineness modulus of WFS were considered as the model's inputs, and the compressive strength of concrete is set as the model's output. A base extreme gradient boosting (XGBoost) model together with two hybrid XGBoost models mixed with the tunicate swarm algorithm (TSA) and the salp swarm algorithm (SSA) were applied. The role of TSA and SSA is to identify the optimum values of XGBoost hyperparameters to obtain the higher performance. The results of these hybrid techniques were compared with the results of the base XGBoost model in order to investigate and justify the implementation of optimisation algorithms. The results showed that the hybrid XGBoost models are faster and more accurate compared to the base XGBoost technique. The XGBoost-SSA model shows superior performance compared to previously published works in the literature, offering a reduced system error rate. Although the WFS-to-cement ratio is significant, the WFS replacement percentage has a smaller influence on the compressive strength of concrete. To improve the compressive strength of concrete fabricated with WFS, the simultaneous consideration of the water-to-cement ratio and fineness modulus of WFS is recommended.

A study on Active Power Filter Available for DC-Link Boost and Power Factor Control (DC전압 충전 및 전원 역률 보상이 가능한 APF에 관한 연구)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.1
    • /
    • pp.53-60
    • /
    • 2013
  • In this paper, a control algorithm for active power filter (APF), which compensates for the harmonics and power factor, boosting the DC-link voltage is proposed. The proposed scheme employs a pulse-width-modulation (PWM) voltage-source inverter. A simple algorithm to detect the load current harmonics is also proposed. The APF and charging circuit are implemented in one inverter system. Finally, the validity of the proposed scheme is investigated with simulated and experimental results for a prototype APF system rated at 3kVA.

Rotated face detection based on sharing features (특징들의 공유에 의한 기울어진 얼굴 검출)

  • Song, Young-Mo;Ko, Yun-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.31-33
    • /
    • 2009
  • Face detection using AdaBoost algorithm is capable of processing images rapidly while having high detection rates. It seemed to be the fastest and the most robust and it is still today. Many improvements or extensions of this method have been proposed. However, previous approaches only deal with upright faces. They suffer from limited discriminant capability for rotated faces as these methods apply the same features for both upright and rotated faces. To solve this problem, it is necessary that we rotate input images or make independently trained detectors. However, this can be slow and can require a lot of training data, since each classifier requires the computation of many different image features. This paper proposes a robust algorithm for finding rotated faces within an image. It reduces the computational and sample complexity, by finding common features that can be shared across the classes. And it will be able to apply with multi-class object detection.

  • PDF

Optimization of Random Subspace Ensemble for Bankruptcy Prediction (재무부실화 예측을 위한 랜덤 서브스페이스 앙상블 모형의 최적화)

  • Min, Sung-Hwan
    • Journal of Information Technology Services
    • /
    • v.14 no.4
    • /
    • pp.121-135
    • /
    • 2015
  • Ensemble classification is to utilize multiple classifiers instead of using a single classifier. Recently ensemble classifiers have attracted much attention in data mining community. Ensemble learning techniques has been proved to be very useful for improving the prediction accuracy. Bagging, boosting and random subspace are the most popular ensemble methods. In random subspace, each base classifier is trained on a randomly chosen feature subspace of the original feature space. The outputs of different base classifiers are aggregated together usually by a simple majority vote. In this study, we applied the random subspace method to the bankruptcy problem. Moreover, we proposed a method for optimizing the random subspace ensemble. The genetic algorithm was used to optimize classifier subset of random subspace ensemble for bankruptcy prediction. This paper applied the proposed genetic algorithm based random subspace ensemble model to the bankruptcy prediction problem using a real data set and compared it with other models. Experimental results showed the proposed model outperformed the other models.

CNN-based Fast Split Mode Decision Algorithm for Versatile Video Coding (VVC) Inter Prediction

  • Yeo, Woon-Ha;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.8 no.3
    • /
    • pp.147-158
    • /
    • 2021
  • Versatile Video Coding (VVC) is the latest video coding standard developed by Joint Video Exploration Team (JVET). In VVC, the quadtree plus multi-type tree (QT+MTT) structure of coding unit (CU) partition is adopted, and its computational complexity is considerably high due to the brute-force search for recursive rate-distortion (RD) optimization. In this paper, we aim to reduce the time complexity of inter-picture prediction mode since the inter prediction accounts for a large portion of the total encoding time. The problem can be defined as classifying the split mode of each CU. To classify the split mode effectively, a novel convolutional neural network (CNN) called multi-level tree (MLT-CNN) architecture is introduced. For boosting classification performance, we utilize additional information including inter-picture information while training the CNN. The overall algorithm including the MLT-CNN inference process is implemented on VVC Test Model (VTM) 11.0. The CUs of size 128×128 can be the inputs of the CNN. The sequences are encoded at the random access (RA) configuration with five QP values {22, 27, 32, 37, 42}. The experimental results show that the proposed algorithm can reduce the computational complexity by 11.53% on average, and 26.14% for the maximum with an average 1.01% of the increase in Bjøntegaard delta bit rate (BDBR). Especially, the proposed method shows higher performance on the sequences of the A and B classes, reducing 9.81%~26.14% of encoding time with 0.95%~3.28% of the BDBR increase.

Trajectory Optimization and Guidance for Terminal Velocity Constrained Missiles (종말 속도벡터 구속조건을 갖는 유도탄의 궤적최적화 및 유도)

  • Ryoo, Chang-Kyung;Tahk, Min-Jea;Kim, Jong-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.6
    • /
    • pp.72-80
    • /
    • 2004
  • In this paper, the design procedure of a guidance algorithm in the boosting phase of missiles with free-flight after thrust cut-off is introduced. The purpose of the guidance is to achieve a required velocity vector at the thrust cut-off. Trajectory optimizations for four cost functions are performed to investigate implementable trajectories in the pitch plane. It is observed from the optimization results that high angle of attack maneuver in the beginning of the flight are required to satisfy the constraints. The proposed guidance algorithm consists of the pitch program to produce open-loop pitch attitude command and the yaw attitude command generator to nullify the velocity to go. The pitch program utilizes the pitch attitude histories obtained from the trajectory optimization.

Estimation-Based Load-Balancing with Admission Control for Cluster Web Servers

  • Sharifian, Saeed;Motamedi, Seyed Ahmad;Akbari, Mohammad Kazem
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.173-181
    • /
    • 2009
  • The growth of the World Wide Web and web-based applications is creating demand for high performance web servers to offer better throughput and shorter user-perceived latency. This demand leads to widely used cluster-based web servers in the Internet infrastructure. Load balancing algorithms play an important role in boosting the performance of cluster web servers. Previous load balancing algorithms suffer a significant performance drop under dynamic and database-driven workloads. We propose an estimation-based load balancing algorithm with admission control for cluster-based web servers. Because it is difficult to accurately determine the load of web servers, we propose an approximate policy. The algorithm classifies requests based on their service times and tracks the number of outstanding requests from each class in each web server node to dynamically estimate each web server load state. The available capacity of each web server is then computed and used for the load balancing and admission control decisions. The implementation results confirm that the proposed scheme improves both the mean response time and the throughput of clusters compared to rival load balancing algorithms and prevents clusters being overloaded even when request rates are beyond the cluster capacity.

  • PDF

Learning Algorithm for Multiple Distribution Data using Haar-like Feature and Decision Tree (다중 분포 학습 모델을 위한 Haar-like Feature와 Decision Tree를 이용한 학습 알고리즘)

  • Kwak, Ju-Hyun;Woen, Il-Young;Lee, Chang-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.1
    • /
    • pp.43-48
    • /
    • 2013
  • Adaboost is widely used for Haar-like feature boosting algorithm in Face Detection. It shows very effective performance on single distribution model. But when detecting front and side face images at same time, Adaboost shows it's limitation on multiple distribution data because it uses linear combination of basic classifier. This paper suggest the HDCT, modified decision tree algorithm for Haar-like features. We still tested the performance of HDCT compared with Adaboost on multiple distributed image recognition.

Improved ADALINE Harmonics Extraction Algorithm for Boosting Performance of Photovoltaic Shunt Active Power Filter under Dynamic Operations

  • Mohd Zainuri, Muhammad Ammirrul Atiqi;Radzi, Mohd Amran Mohd;Soh, Azura Che;Mariun, Norman;Rahim, Nasrudin Abd.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1714-1728
    • /
    • 2016
  • This paper presents improved harmonics extraction based on Adaptive Linear Neuron (ADALINE) algorithm for single phase photovoltaic (PV) shunt active power filter (SAPF). The proposed algorithm, named later as Improved ADALINE, contributes to better performance by removing cosine factor and sum of element that are considered as unnecessary features inside the existing algorithm, known as Modified Widrow-Hoff (W-H) ADALINE. A new updating technique, named as Fundamental Active Current, is introduced to replace the role of the weight factor inside the previous updating technique. For evaluation and comparison purposes, both proposed and existing algorithms have been developed. The PV SAPF with both algorithms was simulated in MATLAB-Simulink respectively, with and without operation or connection of PV. For hardware implementation, laboratory prototype has been developed and the proposed algorithm was programmed in TMS320F28335 DSP board. Steady state operation and three critical dynamic operations, which involve change of nonlinear loads, off-on operation between PV and SAPF, and change of irradiances, were carried out for performance evaluation. From the results and analysis, the Improved ADALINE algorithm shows the best performances with low total harmonic distortion, fast response time and high source power reduction. It performs well in both steady state and dynamic operations as compared to the Modified W-H ADALINE algorithm.

Comparative Analysis of Machine Learning Techniques for IoT Anomaly Detection Using the NSL-KDD Dataset

  • Zaryn, Good;Waleed, Farag;Xin-Wen, Wu;Soundararajan, Ezekiel;Maria, Balega;Franklin, May;Alicia, Deak
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.46-52
    • /
    • 2023
  • With billions of IoT (Internet of Things) devices populating various emerging applications across the world, detecting anomalies on these devices has become incredibly important. Advanced Intrusion Detection Systems (IDS) are trained to detect abnormal network traffic, and Machine Learning (ML) algorithms are used to create detection models. In this paper, the NSL-KDD dataset was adopted to comparatively study the performance and efficiency of IoT anomaly detection models. The dataset was developed for various research purposes and is especially useful for anomaly detection. This data was used with typical machine learning algorithms including eXtreme Gradient Boosting (XGBoost), Support Vector Machines (SVM), and Deep Convolutional Neural Networks (DCNN) to identify and classify any anomalies present within the IoT applications. Our research results show that the XGBoost algorithm outperformed both the SVM and DCNN algorithms achieving the highest accuracy. In our research, each algorithm was assessed based on accuracy, precision, recall, and F1 score. Furthermore, we obtained interesting results on the execution time taken for each algorithm when running the anomaly detection. Precisely, the XGBoost algorithm was 425.53% faster when compared to the SVM algorithm and 2,075.49% faster than the DCNN algorithm. According to our experimental testing, XGBoost is the most accurate and efficient method.