
ETRI Journal, Volume 31, Number 2, April 2009 © 2009 Saeed Sharifian et al. 173

The growth of the World Wide Web and web-based
applications is creating demand for high performance web
servers to offer better throughput and shorter user-
perceived latency. This demand leads to widely used
cluster-based web servers in the Internet infrastructure.
Load balancing algorithms play an important role in
boosting the performance of cluster web servers. Previous
load balancing algorithms suffer a significant performance
drop under dynamic and database-driven workloads. We
propose an estimation-based load balancing algorithm
with admission control for cluster-based web servers.
Because it is difficult to accurately determine the load of
web servers, we propose an approximate policy. The
algorithm classifies requests based on their service times
and tracks the number of outstanding requests from each
class in each web server node to dynamically estimate each
web server load state. The available capacity of each web
server is then computed and used for the load balancing
and admission control decisions. The implementation
results confirm that the proposed scheme improves both
the mean response time and the throughput of clusters
compared to rival load balancing algorithms and prevents
clusters being overloaded even when request rates are
beyond the cluster capacity.

Keywords: Cluster web server, load-balancing
algorithm, layer-7 switch, admission control.

Manuscript received Mar. 13, 2008; revised Dec. 16, 2008; accepted Feb. 18, 2009.
Saeed Sharifian (phone: +98 21 66462691, email: sharifian_s@aut.ac.ir) and Seyed Ahmad

Motamedi (email: motamedi@aut.ac.ir) are with the Department of Electrical Engineering,
Amirkabir University of Technology, Tehran, Iran.

Mohammad Kazem Akbari (email: akbarif@aut.ac.ir) is with the Department of Computer
Engineering & IT, Amirkabir University of Technology, Tehran, Iran.

I. Introduction

Nowadays, the Web has become business-oriented and is the
preferred interface for information and services around the
world. The web community is growing day by day,
exponentially increasing the load that web sites must support.
On the other hand, users have come to expect low site
downtime and short response times. Therefore, web service
providers should offer services with superior performance in
order to retain existing users and attract new ones [1]. One of
the most popular solutions for these challenges is the cluster
web server [2]. More Internet service providers run their
services on a cluster of servers and this trend is accelerating.

A typical cluster web server architecture is shown in Fig. 1.
The main components of the cluster are a set of web servers, a
set of database servers, and a web switch. The web switch acts
as a centralized global scheduler that receives requests and
dispatches them to the web servers.

Internet

Edge
router

Web
switch

Web
servers

Backend
servers

Clients

Fig. 1. Typical architecture of cluster web server.

Estimation-Based Load-Balancing with
Admission Control for Cluster Web Servers

 Saeed Sharifian, Seyed Ahmad Motamedi, and Mohammad Kazem Akbari

174 Saeed Sharifian et al. ETRI Journal, Volume 31, Number 2, April 2009

Any client intending to request a page, first contacts the web
switch. The web switch selects the server best suited to handle
the request and assigns the request to it. If the request involves
data stored in the database servers, the web server sends a
query to the database and converts the results to HTML format.
After the server has finished processing the request, it sends a
response back to the client through the web switch.

To avoid some of the web servers becoming idle while
others are overloaded, a load balancing algorithm is employed
in the cluster. A load balancing algorithm which runs in the
web switch plays an important role in boosting cluster
performance. Load balancers make decisions regarding which
server is best suited to assign a new request to it. The use of a
fine load balancing algorithm increases cluster throughput,
reduces response times, and improves reliability.

Current cluster web servers have to overcome two problems
to keep clients satisfied. First, dynamic workloads which are
becoming popular in current web sites impose significant
performance drops in clusters due to weak load balancing
algorithms. In addition to data-rich online web services, even
seemingly static web pages are usually generated dynamically
in order to include personalization and advertising features.
However, dynamic contents make significantly higher resource
demands than static web pages [3], [4] and create performance
problems in the absence of a proper load balancing algorithm
in cluster web servers. Second, current clusters are subjected to
enormous variations in demand, often in an unpredictable
fashion, and this results in flash crowds. Admission control
helps the cluster serve the maximum number of requests in
overload conditions and maintain response times at an
acceptable level. Therefore, admission control is a critical issue
in keeping a web server cluster operational in the presence of
overload, even when the incoming requests rate is several
times greater than the cluster capacity.

In this paper, we present a new load balancing algorithm
with admission control for cluster web servers. The algorithm
makes decisions based on estimated available capacity of each
web server in a cluster. Our contributions in this paper are the
following. First, we classify requests based on their service
times. Given the big differences in the service demands of web
workloads, classification provides an opportunity to better
manage workloads. Second, we propose a load estimation
mechanism based on the number of requests from each class in
a system and their resource demands. Third an adaptive load
balancing algorithm with an admission control mechanism is
proposed based on the estimated load (available capacity) of
each web server in a cluster. We run some experiments on a
prototype cluster to evaluate the effectiveness of the algorithm
and compare it to rival algorithms. The implementation results
indicate significant gains with the proposed load balancing

algorithm in terms of the mean response time and cluster
throughput. Also, the proposed admission control mechanism
prevents performance drop in overload conditions.

The rest of this paper is organized as follows. Related work
is presented in section II. Section III describes the architecture
of the cluster web server. Section IV presents a method to
classify the web workload. Estimation of the available capacity
of web servers is presented in section V. We propose our
scheduling and admission control algorithms in sections VI and
VII, respectively. Section VIII presents a performance
evaluation system, and experimental results are given in section
IX. Finally, conclusions and future works are outlined in
section X.

II. Related Work

Various academic and commercial proposals confirm the
increasing interest in web clusters regarding load balancing [5]-
[10] architecture design; performance optimization [4];
overload and admission control [1], [11]-[15]; and load
balancing on a geographical scale [16]. A detailed survey of
general load balancing algorithms and their classification into
layer-4 and layer-7 algorithms is provided in [2].

First-generation load balancing algorithms such as random
(RAN) and round-robin (RR) are static algorithms and do not
consider server load information in load balancing decisions.
This shortcoming was improved in the second-generation load
balancing algorithms, such as weighted round-robin (WRR),
least connections (LC), and weighted least connections (WLC)
[2], [6]. These algorithms collect instantaneous load status
information of web servers (such as CPU load, disk usage, and
the number of active network connections) as load descriptors
and use them in server selection decisions. These load statuses
obtained via direct measurement fluctuate at different time
scales and become obsolete quickly [6], [17], [18]. Therefore, a
decision which is made based on direct resource measurement
of load status may be risky if not completely wrong. Moreover,
the communication cost of load measurement within a cluster
for these algorithms is relatively high for a large number of
nodes in the cluster.

Third-generation load balancing algorithms use workload
information such as type of URL and cookies, in addition to
server load information. Proactive request distribution
(PRORD) [10] and ADAPTLOAD [9] are two examples of
third-generation load balancing algorithms that aim to improve
the cache hit rate in web server nodes. These algorithms work
fine in clusters that host traditional static web publishing
services and benefit from a cache [4], [6], [7]. These algorithms
mainly focus on improving the performance of clusters for
static workloads and do not consider dynamic workloads

ETRI Journal, Volume 31, Number 2, April 2009 Saeed Sharifian et al. 175

which impose very different processing requirements on the
cluster. These approaches have been shown by experiment [7]
to be unsuitable for today’s clusters with dynamic contents.
Content aware policy (CAP) [4], [7], [8] is another third-
generation load balancing algorithm which uses request
classification and the multi-class round robin scheme for load
balancing. The shortcoming of CAP is that, this algorithm does
not consider server load states in load balancing decisions.

The effect of overload on web servers has been covered in
several works which have taken different approaches to
protecting web sites from overload. Chen [12] implements a
control theoretic approach which uses a proportional integral
controller in a single web server to guarantee service delay by
admission control. Andreolini [1] proposes an admission
control mechanism for cluster web servers based on the
maximum number of connections that each server can support.
Xiong [14] implements the same strategy.

Our proposal combines important aspects that previous
works have considered in isolation or simply ignored. First, we
consider classification of dynamic and static web workloads in
our scheme. Second, we focus on load balancing with
admission control. Third, our estimation-based load balancing
and admission control algorithms are fully adaptive to the
available resources in a cluster and workload characteristics
instead of using untrustworthy direct measured data such as
CPU load.

III. Proposed Cluster Web Server Architecture

As shown in Fig. 2, the web switch is used to fairly distribute
incoming workloads in the cluster by request classification.
The order and number of requests which will be processed is
controlled (scheduling and admission control), and a suitable
web server is dynamically selected for the request assignment
(dispatching).

We introduce the concept of class to separate requests with
widely differing CPU demands. Requests with similar CPU
demands are mapped into one class of requests denoted by j
(j=1,···,C) according to offline profiling procedure. The
classification module in the web switch parses each incoming
request URL to extract its filename. The classification module
then searches in a lookup table to find the class of each request.
The class of each request is attached to it as a tag which is used
in scheduler and admission control as well as load balancer
sections.

When a new request arrives at the web switch, the
classification module uses a request URL and a lookup table to
determine the class of the request. The classification module
uses the URL field in the HTTP header as input, and reads the
mapping information from the lookup table. The lookup table

Fig. 2. Block Diagram of cluster web server architecture.

Incoming
HTTP

requests

Class C

Class 1

Scheduler &
admission
controller

Classification Load
balancer

W(j) Web server 1

Web server 2

Web server i

Web server M

URL Class
… …
… …

Web switch

Lq(j)

is constructed from CPU demand profiles of various requests.
After a request has been classified, the queue module is
invoked. The queue module implements a set of first-in first-
out (FIFO)-like queues, one for each request class. The queue
module suspends incoming requests and adds each of them to
the queue corresponding to its class. After this phase, the
scheduler selects requests from queues according to the
scheduling algorithm and assigns them to the admission
controller. The scheduler runs while at least one nonempty
queue exists. The admission controller makes a decision to
accept or reject a request. Accepted requests are assigned to a
dispatcher module. The scheduler and admission controller
module use the number of waiting requests in each queue as
Lq(j) to make decisions for the next request selection and
acceptance. After the dispatcher receives a request from the
admission controller, it selects one of the M web servers in the
cluster based on the load balancing algorithm. The algorithm
selects web server i (i=1,···,M) which is estimated to have a
higher available capacity and assigns the request to it. The
dispatcher estimates the available capacity of each server by an
algorithm described in section V.

The dispatcher has a sufficient number of counters (equal to
the number of classes multiplied by the number of servers) to
hold the status of each web server for each class. These
counters are used to track the number of outstanding requests.
When a request is received by the load balancer, it reads the tag
of the request to determine its class. The load balancer then
assigns the request to a web server with higher available
capacity. The dispatcher continuously updates the status
counters and available capacity when a request is assigned to a
web server or when the processing of a request is finished in
the web server. When a web server completes processing a
request, the dispatcher sends the response to the client and
updates the available capacity of the related server. In the
following sections the detailed functionality of each part of the
system is presented.

IV. Web Server Workload Classification

There are several types of web objects that are generally

176 Saeed Sharifian et al. ETRI Journal, Volume 31, Number 2, April 2009

served by web servers [7], [8]. In most cases, we can classify
the web objects into dynamic and static requests. Static
requests include HTML pages with embedded objects, such as
small pictures which can be cached in memory. Each static
web object is a file and can be classified into a certain range of
sizes. Since the service time of a static request is proportional to
the size of the file [19], static requests can be classified based
on their sizes. Note that static requests have small CPU
demands [7], [11]. The processing of static requests consists of
two tasks: reading a file from a disk or cache memory and
transferring it through the network interface. In the past, disk
and network resources both created bottlenecks of web servers
for static services. Nowadays, with high bandwidth networks
and a large amount of RAM in servers for caching contents, the
bottleneck problem for static requests has shifted to CPUs
because of the context switching overhead of static requests.

Nowadays, most web sites support dynamic contents for rich
Internet applications. Dynamic requests consist of dynamic
contents that are generated by server side scripting languages
(such as PHP, PERL, and JSP) or by enterprise web
applications (such as EJB and ASP.NET). Therefore, dynamic
contents cannot be fully cached. The contents of dynamic
requests are not known in advance and must be retrieved from
the web and database servers. Dynamic requests may be as
simple as the sum of bill items which do not require intensive
CPU resources, or as complex as the content of an e-commerce
secure site which requires SSL protocol processing with
intensive use of CPUs [7], [8]. Also, dynamic contents which
are generated by database-driven web applications make
intensive use of CPUs both in the web and database servers.

As mentioned above, to have a better estimation of the
impact of each request on the web server load, we classify
dynamic requests into several classes based on their impact on
server resources. Since the CPU is the main source of
bottlenecks in the generation of dynamic contents [3], [11],
dynamic requests can be classified according to their CPU
demands [5], [7], [8].

The files which were used in our experiments were
generated using the specifications in Tables 1 and 2. The
workloads are classified into 7 classes, C1 to C7. A name
associated with the file size is assigned to each static file. A
PHP script is used for dynamic loads. The script receives a
variable parameter which determines the execution time of the
script. The script reads the input parameter and repeats a one-
millisecond operation in a loop according to the requested
execution time parameter. The dynamic request URL may take
the form of the following example: http://www.example.
com/test.php?time=50. Here, 50 is the input parameter, which
can be varied by the user. Generally, in a real web site, all of the
files which are used as content are known in advance. A web

site uses a limited number of files, and this was also true in our
experiments. After all the files were generated, we ran an
offline workload profiling procedure on a web server. With the
help of profiling each request separately, we could determine
CPU demand, service time, and the number of critical
connections (Nc(j)) for each file. Therefore, we could use
clustering techniques to classify the files with similar CPU
demands (similar service time) into one class. Note that our
proposed algorithm has a higher degree of accuracy when we
use a higher number of classes, but at the same time its
processing overhead will also increase. A solution is to
heuristically determine the number of classes as K and use
algorithms such as K-mean clustering for classification. After
the request classification is finished, the average CPU demand
and the average Nc(j) in each class are computed and used in
the weight (W(j)) determination procedure. In addition, a
lookup table is generated from the results of the classification
(Fig. 2). The lookup table is a mapping between file names in a
workload and their associated classes.

V. Server Available Capacity Estimation

Throughput of a web server is a good criterion of server
capacity. Usually, the throughput curve shows an inverted U
shape with increments in a load. Throughput rises initially, as
the rate of requests increases, and then peaks when a bottleneck
resource (in this case CPU) on the web server reaches to
maximum utilization limit. Once a resource reaches its
maximum usage, queuing for that resource begins, causing
throughput to drop. This point is called the saturation point, and
the number of requests at this point is called the critical number
of requests. To ensure that a server can handle requests with an
acceptable mean response time, any number of requests close
to the critical number of requests should be avoided. Because
the saturation point of a web server is workload dependent, we
need to determine the critical number of requests for each class
of requests separately.

As previously mentioned, we introduce the concept of class
to separate requests with widely differing CPU demands. The
web switch maps requests with similar CPU demands into one
class of requests. We give each class j a normalized weight
W(j) which shows the average CPU demand of class j in
comparison to other classes of requests. Without loss of
generality in our approach, we assume a homogenous cluster
architecture. With a heterogonous cluster, it is necessary to
determine W(j) for each server node separately.

If the critical number of requests for each class j obtained
from profiling is assumed to be Nc(j), the minimum value of
the critical number of requests among all classes can be
determined as

ETRI Journal, Volume 31, Number 2, April 2009 Saeed Sharifian et al. 177

{ }min (1), , (), , () .
j

Nm Nc Nc j Nc C= (1)

The value of Nm is related to a class of requests with a higher
CPU demand. Therefore, we can calculate weight W(j) for
each class j of requests as

()() , {1, , }.Nc jW j j C
Nm

= ∈ (2)

We assume that the maximum capacity of each web server i
in the cluster is Nm requests from the highest CPU intensive
class. From this, we can estimate each server load as a
weighted sum of the number of requests from each class j.
Assume that in each instance of time in the web switch a vector
N(i) is associated with each web server i in the cluster, and the
number of outstanding requests from each class j in web server
i is tracked as follows:

{ }() (,) 1, , .N i n i j j C= = (3)

From this, we can approximate the load of each web server i
as L(i) which is calculated as

1

(,)() .
()

C

j

n i jL i
W j=

= ∑ (4)

Weight W(j) determines the contribution of requests from
class j in the total load of each web server. According to (2) and
(4), the available capacity of each web server i, AC(i), can be
calculated as

1

(,)() .
()

C

j

n i jAC i Nm
W j=

= − ∑ (5)

We use the available capacity AC(i) as a criterion of the web
server’s ability to service requests. The dispatcher selects the
web server i which has the maximum AC(i) value of all servers
and assigns the next request to it. Upon the request assignment
to server i or when the processing of a request in that server is
finished, the AC(i) value is updated. We simply add/remove
1/W(j) term to/from the value of AC(i) in response to any
changes in the number of requests. Therefore, in each instance
of time, AC(i) dynamically shows the current available
capacity value in web server i.

VI. Scheduling Algorithm

We employ a new probabilistic scheduling algorithm which
gives processing preference to a class of requests which has a
larger number of requests waiting in the queue of the web
switch. Due to the highly variable nature of queue length, we
use an exponentially weighted moving average scheme to
smooth the results from consecutive epochs. Assume that the
actual length of queue j is Lq(j), sampled at every Δt units of

time. The smoothed length of queue j can be calculated from
(6) every Δt units of time:

() () (1) (1), 0 1.j jL t Lq j L tα α α= + − − < < (6)

Here, α is a constant. A higher value of α causes the system to
response faster to changes of queue length. Therefore, we use
α=0.8 as a typical value through our experiments. According to
the smoothed length of the queue, we define access probability
for each class of requests as

1

()
() .

()

j
j C

j
j

L t
P t

L t
=

=
∑

 (7)

Access probability dynamically illustrates the relative
contribution of requests from each class in total workload. We
define a probability range for each class j based on its access
probability as

1

0 0

0
0

(), () , 1,2, , ,

where () 0 and () 1.

i i

j j
j j

C

j
j

P t P t i C

P t P t

−

= =

=

⎛ ⎞ =∑ ∑⎜ ⎟
⎝ ⎠

= =∑

(8)

We use the probability ranges to schedule requests in each
interval Δt. Generally, the priority levels are assigned to the
class of requests stored in a queue. Each queue’s priority is
related to its Pj(t) value. These priorities are dynamic and
change according to the incoming workload mixture. A queue
with higher Pj(t) has higher priority, and more requests are read
from it. The scheduler first should select a queue from which to
fetch the next request. Then, the scheduler generates a random
number between 0 and 1. The value of the random number
falls into one of the ranges defined in (8), so the queue with
index j related to the selected range is chosen. The scheduler
then fetches a request from the selected queue and assigns it to
the admission controller. Therefore, lower priority queues have
a lower chance than higher priority queues to flow.

VII. Admission Control Algorithm

 The ideal behavior of an overloaded web server is to keep
serving requests at its maximum capacity, even when the
imposed load is beyond its capacity; however, servers are
usually overloaded. To prevent overloading, an admission
control mechanism should be devised in the web switch.
Simple admission control mechanisms typically drop requests
regardless of their impact on server resources. However,
requests should not be treated equally. Different types of
requests have different CPU demands; therefore, it is essential
for the admission controller to consider these differences. Also,
service providers are advised to rely on rough guidelines for

178 Saeed Sharifian et al. ETRI Journal, Volume 31, Number 2, April 2009

total utilization and avoid peak CPU utilization of over 70%
[20]. Therefore, our admission controller algorithm begins its
work when the average available capacity (ACC) of web
servers in cluster becomes less than 0.3:

1

()

0.3.

M

i

AC i
MACC

Nm
== ≤
∑

 (9)

The proposed admission control algorithm considers both
the CPU demand of various classes of requests and their
population in the web-switch queue to make decisions. We
define the acceptance probability vector PA(t) which is
calculated every Δt units of time (when the ACC value is less
than 0.3) as

{ }() (1), , (), , () ,PA t Pa Pa j Pa C= (10)

where Pa(j) is the probability of accepting a request from class
j and can be calculated as

1

() ()
() ().

() ()

j
C

j
j

P t W j
Pa j ACC k

P t W j
=

×
= × ×

×∑
 (11)

The first term is related to the weighted access probability.
Therefore, a request from a class with a lower CPU demand
and longer queue length has a higher chance of being accepted.
The second term in (11) is a reduction term which permits only
some requests to be accepted. This term is related to the ACC.
Constant k is a scaling factor which maps the range [0,0.3] into
[0,1], and its value in this case is 1/0.3=3.333.

When a request arrives at the admission controller, it
generates a random number between 0 and 1. If the generated
number is smaller than the accepted probability of the request
class, the request is accepted and assigned to the dispatcher;
otherwise, it is dropped. In the implemented system, when the
admission controller rejects a request, an error message (HTTP
code 500) is sent to the client, and at the same time, the
associated network socket is closed. A benchmarking tool
recognizes the request as unsuccessful and logs it. Note that
when the ACC is higher than 0.3, all requests are accepted.

VIII. Performance Evaluation

To evaluate the proposed load balancing algorithm, it was
implemented on a cluster web server, and cluster throughput
and average response time were selected as criteria [4]-[8]. We
also implemented two commonly used load balancing
algorithms WRR [4]-[8] and CAP [5]-[8] for comparison. We
used the average CPU load as a load index for the WRR
algorithm. We used the same classification method for CAP
and the proposed estimation-based algorithm. In the following

Table 1. Static workload specifications.

Class File size range (kB) Probability of access

C1 0.1<X<1 0.35

C2 1<X<10 0.5

C3 10<X<100 0.14

C4 100<X<1000 0.01

Table 2. Dynamic workload specifications.

Class Processing time (ms) Probability of access

C5 10 0.5

C6 50 0.3

C7 100 0.2

sections, the workloads and implementation setups used in our
experiments are given.

1. Experimental Workload

As previously mentioned, an actual web site may serve
different percentages of static and dynamic contents. Therefore,
we considered two main types of requests (static and dynamic)
in synthetic workloads in our experiments. In [19], it was
confirmed that the proportion of static requests in the Web has
a heavy-tail distribution. In this kind of distribution, most
documents are small in size (a few kB) and a small number of
files are larger. Large files tend to contribute to the majority of
server loads. Also, the service times of static files depend
directly on the size of the files [19]. Larger files require longer
service times; therefore, we used four classes of files with
various size ranges and various access probabilities as the static
file sets in our synthetic workload. The choice of workload and
its parameters was adopted from frequently used benchmarks
such as WebStone [21] and SPECweb99 [22]. Table 1
summarizes the specifications used for static file sets in the
synthetic workload.

As in [7], [8], we also considered three classes of dynamic
requests with various ranges of service time and occurrence
probabilities as dynamic file sets in the synthetic workload.
According to Table 2, the requests in class C5 emulate an
activity that stresses the CPU, such as ciphering in a SSL
connection. The requests in class C6 emulate queries to a
database, and the requests in class C7 emulate queries to a
database and ciphering the results. The request classes are
characterized by a negative exponential distribution for the
service time and have means of 10, 50, and 100 ms,
respectively. Table 2 summarizes the specifications for

ETRI Journal, Volume 31, Number 2, April 2009 Saeed Sharifian et al. 179

dynamic file sets of the synthetic workload.
In the final synthetic workload, 80% of the file sets are

dynamic, and 20% are static. The high percentage of dynamic
file sets in the final synthetic workload conforms with
workload characterizations of typical E-commerce sites [23],
[24].

2. Experimental Architecture

The cluster web server consisted of 17 machines. One
machine was used as the web switch, and the other 16
machines were used as web server nodes. The web server
nodes were AMD Athlon 3.2 GHz CPUs with 512 MB of
DDR RAM. The web-switch node was a dual AMD Opteron
2218 dual-core 2.6 GHz CPU with 2 GB of DDR RAM. All
the nodes were connected through a high-speed gigabit LAN
switch. We used enough 2 GHz AMD Athlon machines as the
client emulators to ensure that they would not become
bottlenecked in any of our experiments.

The distributed architecture of the cluster was hidden from
the clients via a unique virtual IP address of the web switch. All
the machines in the cluster ran Linux kernel 2.6 as an operating
system. Also, we used Apache v.1.3.39 [25] as a web server,
configured with a PHP v.5 [26] module as the server side
scripting engine. We increased the maximum number of
processes for each Apache instance to 512 to avoid connection
refusals from the server when numerous clients simultaneously
requested services. We observed that with that value, the
number of Apache processes never limited the performance.
The client workloads for the experiments were generated using
a modified version of the synthetic workload generator and a
web performance measurement tool called Httperf [27]. We
first generated offline traces of synthetic user sessions and then
replayed these traces using Httperf. Using the pre-generated
traces guaranteed the repeatability of the tests, which is
fundamental for a fair comparison between the load balancing
algorithms. We varied the load on the site by varying the
number of concurrent clients. In the synthetic workload, each
user session consisted of a sequence of requests separated by
user think time. The think time and session time were
generated from a negative exponential distribution with means
of 7 seconds and 15 minutes, respectively. These numbers
conform to the TPC-W specifications [24].

IX. Experimental Results

In the following sections, the results of our experiments are
presented in terms of mean response time and throughput.
Generally, an algorithm that achieves higher throughput and
lower average response time better utilizes the cluster resources

Fig. 3. Mean response time variation vs. number of clients.

0

1

2

3

4

5

6

7

8

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of clients

R
es

po
ns

e
tim

e
(s

)

Estimation-based algorithm CAP WRR

and fairly balances the loads among server nodes. Web servers
normally work below the nominal peak throughput. Note that
there is almost a linear relationship between the average
response time and the system load in this situation. However,
under overload conditions, when a web server receives more
requests than its maximum capacity, the response time of the
web server starts to fluctuate and grows rapidly with the
number of clients. The admission control mechanism helps to
alleviate this problem by dropping the excessive requests and
keeping the average response time within a certain range. We
investigated these two important working conditions, low-load
and overload conditions, in our experiments.

1. Mean Response Time

Figure 3 shows the average response time of the cluster web
server for three load balancing algorithms under the synthetic
workload.

In the low-load situation, the average response time was
slightly lower for the estimation-based algorithm in
comparison to rival schemes. The WRR scheme with 2
seconds average response time served 3,250 clients. In contrast,
the CAP with the same average response time served 5,500
clients. At the same time, the estimation-based algorithm
served 8,400 clients in 2 seconds and did not serve any extra
clients.

The overload situation starts from the saturation point where
the average response time for the WRR and the CAP
algorithms become unstable and increase exponentially due to
the lack of an admission control mechanism. It can be
concluded that a better load balancing algorithm and use of
admission control in the proposed estimation-based algorithm
improves the performance of the cluster to accept more clients
than the other two algorithms.

180 Saeed Sharifian et al. ETRI Journal, Volume 31, Number 2, April 2009

Fig. 4. Throughput variation vs. number of clients.

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000
Number of clients

Th
ro

ug
ht

pu
t (

re
q/

s)

Estimation-based algorithm CAP WRR

2. Throughput

Figure 4 shows the throughput of the algorithms on the
cluster in terms of the number of requests per second. For light
loads, the throughput of a growing number of clients increases
linearly.

The estimation-based algorithm achieved slightly higher
throughput in comparison to the other schemes. With
additional clients, at the level of 1,280 req/s, the throughput
reached its peak for the estimation-based algorithm when it
was serving 8,500 clients. The saturation point of the CAP
algorithm was at 1,020 req/s for 8,000 clients, and that of WRR
was at 648 req/s for 5,500 clients. The lower throughput with
the WRR and CAP schemes result from the fact that one or
more web server(s) in the cluster reaches saturation point.
When there are excessive requests in the web server,
consequently many of them time out. The total overhead time
of each timed-out request adds to unproductive work, while
some requests do not even get any service. The wasted time
causes drastic drops in the throughput of the cluster web server,
while resource utilization remains at 100%.

These results clearly indicate that the load balancer of the
estimation-based algorithm works better than that of the two
other algorithms. Also, under overload conditions, the
estimation-based algorithm provides stable throughput due to
the use of the admission control mechanism, while the two
other algorithms face unstable conditions and their throughputs
of CAP and WRR are diminished. In brief, the average request
rate that can be served by the estimation-based algorithm
scheme is about 1.25 times higher than with CAP and 1.97
times higher than with WRR.

X. Conclusion

In this paper, we proposed a novel estimation-based load

balancing algorithm with an admission control mechanism for
cluster-based web servers. The proposed scheme classifies
incoming requests based on their service time. We dynamically
estimated server loads by tracking the number of outstanding
requests from each class in each web server and considered
their service demands. Then, the available capacity of each
web server was used in load balancing and admission control
decisions. We also considered the dynamically evaluated
access probability of each class in the incoming workload for
proposed scheduling and admission control decisions.

The proposed scheme was implemented in a prototype
cluster web server. The experimental results obtained from a
synthetic workload showed that, due to better load balancing
and admission control of the proposed scheme, the web cluster
can accept a higher number of concurrent clients and keep the
mean response time of the cluster lower than with the WRR
and the CAP load balancing algorithms. However, the
dispatcher can become bottlenecked in our proposed scheme.
In this situation, we can use a cluster of cluster web servers. It
consists of a layer-4 web switch in front of some layer-7 web
switches. The layer-4 switch receives all requests and
dispatches them among layer-7 switches with simple (RR,
WRR, LC) algorithms. Each layer-7 switch implements our
proposed algorithm and manages part of the web server.
Current layer-4 hardware switches can handle many concurrent
clients, so the proposed layer-7 switch does not seem to lead to
bottlenecking for the cluster of cluster web servers.

References

[1] M. Andreolini and E. Casalicchio, “A Cluster-Based Web System
Providing Differentiated and Guaranteed Services,” Cluster
Computing, vol. 7, 2004, pp. 7-19.

[2] T. Schroeder, S. Goddard, and B. Ramamurthy, “Scalable Web
Server Clustering Technologies,” IEEE Network, vol. 14, no. 3,
May/June 2000, pp. 38-45.

[3] J. Challenger et al., “Efficiently Serving Dynamic Data at Highly
Accessed Web Sites,” IEEE/ACM Trans. on Networking, vol. 12,
2004, pp. 223-233.

[4] M. Andreolini, M. Colajanni, and R. Morselli, “Performance
Study of Dispatching Algorithms in Multi-tier Web
Architectures,” ACM SIGMETRICS Perf. Eval. Review, vol. 30,
no. 2, Sept. 2002, pp. 10-20.

[5] V. Cardellini et al., “The State of the Art in Locally Distributed
Web-Server Systems,” ACM Computing Surveys (CSUR), vol. 31,
June 2002, pp. 263-311.

[6] E. Casalicchio and S. Tucci, “Static and Dynamic Scheduling
Algorithms for Scalable Web Server Farm,” Proc. Euromicro
Workshop on Parallel and Dist. Proc., 2001, pp. 199-176.

[7] E. Casalicchio, V. Cardellini, and M. Colajanni, “Client-Aware

ETRI Journal, Volume 31, Number 2, April 2009 Saeed Sharifian et al. 181

Dispatching Algorithms for Cluster-Based Web Servers,” Cluster
Comp., vol. 5, no. 1, Jan. 2002, pp. 65-74.

[8] M. Andreolini, M. Colajanni, and M. Nuccio, “Scalability of
Content-Aware Server Switches for Cluster-Based Web
Information Systems,” Proc. IEEE World Wide Web Conf., 2003.

[9] Q. Zhang et al., “Workload-Aware Load Balancing for Clustered
Web Servers,” IEEE Trans. Parallel and Distributed Systems, vol.
16, Mar. 2005, pp. 219-233.

[10] H.K. Lee, “A PROactive Request Distribution (PRORD) Using
Web Log Mining in a Cluster-Based Web Server,” International
Conference on Parallel Processing (ICPP), 2006, pp. 559-568.

[11] A. Chandra et al., “An Observation-Based Approach Towards
Self-Managing Web Servers,” Computer Communications, vol.
29, May 2006, pp. 1174-1188.

[12] L. Chen, Y. Lu, and T.F. Abdelzaher, “Feedback Control
Architecture and Design Methodology for Service Delay
Guarantees in Web Servers,” IEEE Parallel and Distributed
Systems, vol. 17, 2006, pp. 1014-1027.

[13] V. Cardellini et al., “Web Switch Support for Differentiated
Services,” ACM SIGMETRICS Performance Evaluation Review,
vol. 29, Sept. 2001, pp. 14-19.

[14] Z. Xiong and P. Yan, “A Solution for Supporting QoS in Web
Server Cluster,” Proc. of International Conference on Wireless
Communications, Networking and Mobile Computing, vol. 2, no.
23-26, Sept. 2005, pp. 834-839.

[15] V. Cardellini et al., “Mechanisms for Quality of Service in Web
Clusters,” Computer Networks, vol. 17, Dec. 2001, pp. 761-771.

[16] V. Cardellini, M. Colajanni, and P. Yu, “Request Redirection
Algorithms for Distributed Web Systems,” IEEE Trans. Parallel
and Distributed Systems, vol. 14, no. 4, April 2003, pp. 355-368.

[17] M. Mitzenmacher, “How Useful is Old Information,” IEEE Trans.
Parallel and Distributed Systems, vol. 11, Jan. 2000, pp. 6-20.

[18] M. Dahlin, “Interpreting Stale Load Information,” IEEE Trans.
Parallel Distributed System, vol. 11, no. 10, Oct. 2000, pp. 1033-
1047.

[19] B. Schroeder and M.H. Balter, “Web Servers under Overload:
How Scheduling Can Help,” ACM Trans. Internet Technology
(TOIT), vol. 6, no. 1, Feb. 2006, pp. 20-52.

[20] A. Cockcroft and B. Walker, Capacity Planning for Internet
Services, SUN Press, 2001.

[21] Webstone: http://www.mindcraft.com/webstone.
[22] Specweb99: http://www.spec.org.
[23] RUBIS benchmark: http://rubis.objectweb.org/
[24] Transaction Processing Council, http://www.tpc.org/.
[25] Apache: http://www.apache.org.
[26] MySQL Database: http://www.mysql.com/.
[27] D. Mosberger and T. Jin, “Httperf: A Tool to Measure Web

Server Performance,” Proc. USENIX Symp. Internet
Technologies and Systems, 1997, pp. 59-76.

Saeed Sharifian received his BSc degree in
electrical engineering from the KNT University
of Technology, Tehran, Iran, in 2000, and his
MSc degree in digital electronic engineering
from the Amirkabir University of Technology
(Tehran Polytechnic), Tehran, Iran, in 2002. He
is currently a member of the Iranian High

Performance Computing Research Centre (HPCRC) as a researcher.
He is now a PhD candidate with the Department of Electrical
Engineering, Amirkabir University of Technology, Tehran, Iran. His
research interests include high-performance web server architecture,
parallel computing and programming, sensor networks, as well as
performance modeling and evaluation.

Seyed Ahmad Motamedi received the BS
degree in electronic engineering from
Amirkabir University of Technology, Tehran,
Iran, in 1979. He received the MS degree in
computer hardware in 1981, and the PhD
degree in informatics systems (computer
hardware) in 1984, both from University of

Pierre & Marie Curie (Paris VI), France. Currently, he is a full
professor of electrical engineering technology. He was the President of
the Iranian Research Organization for Science and Technology
(IROST) from 1986 to 2001. His research interests include parallel
processing, image processing, microprocessor systems, automation,
and biomedical engineering. He has published papers in more than 60
international conference proceedings and scientific journals. He is also
the author of three books.

Mohammad Kazem Akbari received his BSc
degree in computer engineering from the
National (Beheshti) University, Tehran, Iran, in
1984, and the MSc and PhD degrees in
computer engineering from the Case Western
Reserve University, Cleveland, Ohio, USA, in
1991 and 1995, respectively. He is currently a

faculty member with the Department of Computer Engineering and IT
at Amirkabir University of Technology (Tehran Polytechnic), Tehran,
Iran. He is also the Chair of the Iranian High Performance Computing
Research Centre. His research interests include parallel processing, grid
and cluster computing systems, as well as mathematical modeling. Dr.
Akbari is a member of the ACM and the scientific committee of the
Computer Society of Iran.

