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The growth of the World Wide Web and web-based 
applications is creating demand for high performance web 
servers to offer better throughput and shorter user-
perceived latency. This demand leads to widely used 
cluster-based web servers in the Internet infrastructure. 
Load balancing algorithms play an important role in 
boosting the performance of cluster web servers. Previous 
load balancing algorithms suffer a significant performance 
drop under dynamic and database-driven workloads. We 
propose an estimation-based load balancing algorithm 
with admission control for cluster-based web servers. 
Because it is difficult to accurately determine the load of 
web servers, we propose an approximate policy. The 
algorithm classifies requests based on their service times 
and tracks the number of outstanding requests from each 
class in each web server node to dynamically estimate each 
web server load state. The available capacity of each web 
server is then computed and used for the load balancing 
and admission control decisions. The implementation 
results confirm that the proposed scheme improves both 
the mean response time and the throughput of clusters 
compared to rival load balancing algorithms and prevents 
clusters being overloaded even when request rates are 
beyond the cluster capacity. 
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I. Introduction 

Nowadays, the Web has become business-oriented and is the 
preferred interface for information and services around the 
world. The web community is growing day by day, 
exponentially increasing the load that web sites must support. 
On the other hand, users have come to expect low site 
downtime and short response times. Therefore, web service 
providers should offer services with superior performance in 
order to retain existing users and attract new ones [1]. One of 
the most popular solutions for these challenges is the cluster 
web server [2]. More Internet service providers run their 
services on a cluster of servers and this trend is accelerating.  

A typical cluster web server architecture is shown in Fig. 1. 
The main components of the cluster are a set of web servers, a 
set of database servers, and a web switch. The web switch acts 
as a centralized global scheduler that receives requests and 
dispatches them to the web servers.  
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Fig. 1. Typical architecture of cluster web server.  
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Any client intending to request a page, first contacts the web 
switch. The web switch selects the server best suited to handle 
the request and assigns the request to it. If the request involves 
data stored in the database servers, the web server sends a 
query to the database and converts the results to HTML format. 
After the server has finished processing the request, it sends a 
response back to the client through the web switch.  

To avoid some of the web servers becoming idle while 
others are overloaded, a load balancing algorithm is employed 
in the cluster. A load balancing algorithm which runs in the 
web switch plays an important role in boosting cluster 
performance. Load balancers make decisions regarding which 
server is best suited to assign a new request to it. The use of a 
fine load balancing algorithm increases cluster throughput, 
reduces response times, and improves reliability. 

Current cluster web servers have to overcome two problems 
to keep clients satisfied. First, dynamic workloads which are 
becoming popular in current web sites impose significant 
performance drops in clusters due to weak load balancing 
algorithms. In addition to data-rich online web services, even 
seemingly static web pages are usually generated dynamically 
in order to include personalization and advertising features. 
However, dynamic contents make significantly higher resource 
demands than static web pages [3], [4] and create performance 
problems in the absence of a proper load balancing algorithm 
in cluster web servers. Second, current clusters are subjected to 
enormous variations in demand, often in an unpredictable 
fashion, and this results in flash crowds. Admission control 
helps the cluster serve the maximum number of requests in 
overload conditions and maintain response times at an 
acceptable level. Therefore, admission control is a critical issue 
in keeping a web server cluster operational in the presence of 
overload, even when the incoming requests rate is several 
times greater than the cluster capacity.  

In this paper, we present a new load balancing algorithm 
with admission control for cluster web servers. The algorithm 
makes decisions based on estimated available capacity of each 
web server in a cluster. Our contributions in this paper are the 
following. First, we classify requests based on their service 
times. Given the big differences in the service demands of web 
workloads, classification provides an opportunity to better 
manage workloads. Second, we propose a load estimation 
mechanism based on the number of requests from each class in 
a system and their resource demands. Third an adaptive load 
balancing algorithm with an admission control mechanism is 
proposed based on the estimated load (available capacity) of 
each web server in a cluster. We run some experiments on a 
prototype cluster to evaluate the effectiveness of the algorithm 
and compare it to rival algorithms. The implementation results 
indicate significant gains with the proposed load balancing 

algorithm in terms of the mean response time and cluster 
throughput. Also, the proposed admission control mechanism 
prevents performance drop in overload conditions.  

The rest of this paper is organized as follows. Related work 
is presented in section II. Section III describes the architecture 
of the cluster web server. Section IV presents a method to 
classify the web workload. Estimation of the available capacity 
of web servers is presented in section V. We propose our 
scheduling and admission control algorithms in sections VI and 
VII, respectively. Section VIII presents a performance 
evaluation system, and experimental results are given in section 
IX. Finally, conclusions and future works are outlined in 
section X. 

II. Related Work  

Various academic and commercial proposals confirm the 
increasing interest in web clusters regarding load balancing [5]-
[10] architecture design; performance optimization [4]; 
overload and admission control [1], [11]-[15]; and load 
balancing on a geographical scale [16]. A detailed survey of 
general load balancing algorithms and their classification into 
layer-4 and layer-7 algorithms is provided in [2].  

First-generation load balancing algorithms such as random 
(RAN) and round-robin (RR) are static algorithms and do not 
consider server load information in load balancing decisions. 
This shortcoming was improved in the second-generation load 
balancing algorithms, such as weighted round-robin (WRR), 
least connections (LC), and weighted least connections (WLC) 
[2], [6]. These algorithms collect instantaneous load status 
information of web servers (such as CPU load, disk usage, and 
the number of active network connections) as load descriptors 
and use them in server selection decisions. These load statuses 
obtained via direct measurement fluctuate at different time 
scales and become obsolete quickly [6], [17], [18]. Therefore, a 
decision which is made based on direct resource measurement 
of load status may be risky if not completely wrong. Moreover, 
the communication cost of load measurement within a cluster 
for these algorithms is relatively high for a large number of 
nodes in the cluster.    

Third-generation load balancing algorithms use workload 
information such as type of URL and cookies, in addition to 
server load information. Proactive request distribution 
(PRORD) [10] and ADAPTLOAD [9] are two examples of 
third-generation load balancing algorithms that aim to improve 
the cache hit rate in web server nodes. These algorithms work 
fine in clusters that host traditional static web publishing 
services and benefit from a cache [4], [6], [7]. These algorithms 
mainly focus on improving the performance of clusters for 
static workloads and do not consider dynamic workloads 
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which impose very different processing requirements on the 
cluster. These approaches have been shown by experiment [7] 
to be unsuitable for today’s clusters with dynamic contents. 
Content aware policy (CAP) [4], [7], [8] is another third-
generation load balancing algorithm which uses request 
classification and the multi-class round robin scheme for load 
balancing. The shortcoming of CAP is that, this algorithm does 
not consider server load states in load balancing decisions. 

The effect of overload on web servers has been covered in 
several works which have taken different approaches to 
protecting web sites from overload. Chen [12] implements a 
control theoretic approach which uses a proportional integral 
controller in a single web server to guarantee service delay by 
admission control. Andreolini [1] proposes an admission 
control mechanism for cluster web servers based on the 
maximum number of connections that each server can support. 
Xiong [14] implements the same strategy.  

Our proposal combines important aspects that previous 
works have considered in isolation or simply ignored. First, we 
consider classification of dynamic and static web workloads in 
our scheme. Second, we focus on load balancing with 
admission control. Third, our estimation-based load balancing 
and admission control algorithms are fully adaptive to the 
available resources in a cluster and workload characteristics 
instead of using untrustworthy direct measured data such as 
CPU load. 

III. Proposed Cluster Web Server Architecture 

As shown in Fig. 2, the web switch is used to fairly distribute 
incoming workloads in the cluster by request classification. 
The order and number of requests which will be processed is 
controlled (scheduling and admission control), and a suitable 
web server is dynamically selected for the request assignment 
(dispatching). 

We introduce the concept of class to separate requests with 
widely differing CPU demands. Requests with similar CPU 
demands are mapped into one class of requests denoted by j 
(j=1,···,C) according to offline profiling procedure. The 
classification module in the web switch parses each incoming 
request URL to extract its filename. The classification module 
then searches in a lookup table to find the class of each request. 
The class of each request is attached to it as a tag which is used 
in scheduler and admission control as well as load balancer 
sections. 

When a new request arrives at the web switch, the 
classification module uses a request URL and a lookup table to 
determine the class of the request. The classification module 
uses the URL field in the HTTP header as input, and reads the 
mapping information from the lookup table. The lookup table  

 

Fig. 2. Block Diagram of cluster web server architecture. 
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is constructed from CPU demand profiles of various requests. 
After a request has been classified, the queue module is 
invoked. The queue module implements a set of first-in first-
out (FIFO)-like queues, one for each request class. The queue 
module suspends incoming requests and adds each of them to 
the queue corresponding to its class. After this phase, the 
scheduler selects requests from queues according to the 
scheduling algorithm and assigns them to the admission 
controller. The scheduler runs while at least one nonempty 
queue exists. The admission controller makes a decision to 
accept or reject a request. Accepted requests are assigned to a 
dispatcher module. The scheduler and admission controller 
module use the number of waiting requests in each queue as 
Lq(j) to make decisions for the next request selection and 
acceptance. After the dispatcher receives a request from the 
admission controller, it selects one of the M web servers in the 
cluster based on the load balancing algorithm. The algorithm 
selects web server i (i=1,···,M) which is estimated to have a 
higher available capacity and assigns the request to it. The 
dispatcher estimates the available capacity of each server by an 
algorithm described in section V.  

The dispatcher has a sufficient number of counters (equal to 
the number of classes multiplied by the number of servers) to 
hold the status of each web server for each class. These 
counters are used to track the number of outstanding requests. 
When a request is received by the load balancer, it reads the tag 
of the request to determine its class. The load balancer then 
assigns the request to a web server with higher available 
capacity. The dispatcher continuously updates the status 
counters and available capacity when a request is assigned to a 
web server or when the processing of a request is finished in 
the web server. When a web server completes processing a 
request, the dispatcher sends the response to the client and 
updates the available capacity of the related server. In the 
following sections the detailed functionality of each part of the 
system is presented.  

IV. Web Server Workload Classification 

There are several types of web objects that are generally 
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served by web servers [7], [8]. In most cases, we can classify 
the web objects into dynamic and static requests. Static 
requests include HTML pages with embedded objects, such as 
small pictures which can be cached in memory. Each static 
web object is a file and can be classified into a certain range of 
sizes. Since the service time of a static request is proportional to 
the size of the file [19], static requests can be classified based 
on their sizes. Note that static requests have small CPU 
demands [7], [11]. The processing of static requests consists of 
two tasks: reading a file from a disk or cache memory and 
transferring it through the network interface. In the past, disk 
and network resources both created bottlenecks of web servers 
for static services. Nowadays, with high bandwidth networks 
and a large amount of RAM in servers for caching contents, the 
bottleneck problem for static requests has shifted to CPUs 
because of the context switching overhead of static requests.   

Nowadays, most web sites support dynamic contents for rich 
Internet applications. Dynamic requests consist of dynamic 
contents that are generated by server side scripting languages 
(such as PHP, PERL, and JSP) or by enterprise web 
applications (such as EJB and ASP.NET). Therefore, dynamic 
contents cannot be fully cached. The contents of dynamic 
requests are not known in advance and must be retrieved from 
the web and database servers. Dynamic requests may be as 
simple as the sum of bill items which do not require intensive 
CPU resources, or as complex as the content of an e-commerce 
secure site which requires SSL protocol processing with 
intensive use of CPUs [7], [8]. Also, dynamic contents which 
are generated by database-driven web applications make 
intensive use of CPUs both in the web and database servers. 

As mentioned above, to have a better estimation of the 
impact of each request on the web server load, we classify 
dynamic requests into several classes based on their impact on 
server resources. Since the CPU is the main source of 
bottlenecks in the generation of dynamic contents [3], [11], 
dynamic requests can be classified according to their CPU 
demands [5], [7], [8].  

The files which were used in our experiments were 
generated using the specifications in Tables 1 and 2. The 
workloads are classified into 7 classes, C1 to C7. A name 
associated with the file size is assigned to each static file. A 
PHP script is used for dynamic loads. The script receives a 
variable parameter which determines the execution time of the 
script. The script reads the input parameter and repeats a one-
millisecond operation in a loop according to the requested 
execution time parameter. The dynamic request URL may take 
the form of the following example: http://www.example. 
com/test.php?time=50. Here, 50 is the input parameter, which 
can be varied by the user. Generally, in a real web site, all of the 
files which are used as content are known in advance. A web 

site uses a limited number of files, and this was also true in our 
experiments. After all the files were generated, we ran an 
offline workload profiling procedure on a web server. With the 
help of profiling each request separately, we could determine 
CPU demand, service time, and the number of critical 
connections (Nc(j)) for each file. Therefore, we could use 
clustering techniques to classify the files with similar CPU 
demands (similar service time) into one class. Note that our 
proposed algorithm has a higher degree of accuracy when we 
use a higher number of classes, but at the same time its 
processing overhead will also increase. A solution is to 
heuristically determine the number of classes as K and use 
algorithms such as K-mean clustering for classification. After 
the request classification is finished, the average CPU demand 
and the average Nc(j) in each class are computed and used in 
the weight (W(j)) determination procedure. In addition, a 
lookup table is generated from the results of the classification 
(Fig. 2). The lookup table is a mapping between file names in a 
workload and their associated classes. 

V. Server Available Capacity Estimation 

Throughput of a web server is a good criterion of server 
capacity. Usually, the throughput curve shows an inverted U 
shape with increments in a load. Throughput rises initially, as 
the rate of requests increases, and then peaks when a bottleneck 
resource (in this case CPU) on the web server reaches to 
maximum utilization limit. Once a resource reaches its 
maximum usage, queuing for that resource begins, causing 
throughput to drop. This point is called the saturation point, and 
the number of requests at this point is called the critical number 
of requests. To ensure that a server can handle requests with an 
acceptable mean response time, any number of requests close 
to the critical number of requests should be avoided. Because 
the saturation point of a web server is workload dependent, we 
need to determine the critical number of requests for each class 
of requests separately.  

As previously mentioned, we introduce the concept of class 
to separate requests with widely differing CPU demands. The 
web switch maps requests with similar CPU demands into one 
class of requests. We give each class j a normalized weight 
W(j) which shows the average CPU demand of class j in 
comparison to other classes of requests. Without loss of 
generality in our approach, we assume a homogenous cluster 
architecture. With a heterogonous cluster, it is necessary to 
determine W(j) for each server node separately. 

If the critical number of requests for each class j obtained 
from profiling is assumed to be Nc(j), the minimum value of 
the critical number of requests among all classes can be 
determined as 
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{ }min (1), , ( ), , ( ) .
j

Nm Nc Nc j Nc C=       (1) 

The value of Nm is related to a class of requests with a higher 
CPU demand. Therefore, we can calculate weight W(j) for 
each class j of requests as 

( )( ) , {1, , }.Nc jW j j C
Nm

= ∈          (2) 

We assume that the maximum capacity of each web server i 
in the cluster is Nm requests from the highest CPU intensive 
class. From this, we can estimate each server load as a 
weighted sum of the number of requests from each class j. 
Assume that in each instance of time in the web switch a vector 
N(i) is associated with each web server i in the cluster, and the 
number of outstanding requests from each class j in web server 
i is tracked as follows: 

{ }( ) ( , ) 1, , .N i n i j j C= =          (3) 

From this, we can approximate the load of each web server i 
as L(i) which is calculated as  

1
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( )

C

j
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Weight W(j) determines the contribution of requests from 
class j in the total load of each web server. According to (2) and 
(4), the available capacity of each web server i, AC(i), can be 
calculated as 

1

( , )( ) .
( )

C

j

n i jAC i Nm
W j=

= − ∑            (5) 

We use the available capacity AC(i) as a criterion of the web 
server’s ability to service requests. The dispatcher selects the 
web server i which has the maximum AC(i) value of all servers 
and assigns the next request to it. Upon the request assignment 
to server i or when the processing of a request in that server is 
finished, the AC(i) value is updated. We simply add/remove 
1/W(j) term to/from the value of AC(i) in response to any 
changes in the number of requests. Therefore, in each instance 
of time, AC(i) dynamically shows the current available 
capacity value in web server i. 

VI. Scheduling Algorithm 

We employ a new probabilistic scheduling algorithm which 
gives processing preference to a class of requests which has a 
larger number of requests waiting in the queue of the web 
switch. Due to the highly variable nature of queue length, we 
use an exponentially weighted moving average scheme to 
smooth the results from consecutive epochs. Assume that the 
actual length of queue j is Lq(j), sampled at every Δt units of 

time. The smoothed length of queue j can be calculated from 
(6) every Δt units of time:  

( ) ( ) (1 ) ( 1), 0 1.j jL t Lq j L tα α α= + − − < <      (6) 

Here, α is a constant. A higher value of α causes the system to 
response faster to changes of queue length. Therefore, we use 
α=0.8 as a typical value through our experiments. According to 
the smoothed length of the queue, we define access probability 
for each class of requests as 

1
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Access probability dynamically illustrates the relative 
contribution of requests from each class in total workload. We 
define a probability range for each class j based on its access 
probability as 

1

0 0

0
0
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We use the probability ranges to schedule requests in each 
interval Δt. Generally, the priority levels are assigned to the 
class of requests stored in a queue. Each queue’s priority is 
related to its Pj(t) value. These priorities are dynamic and 
change according to the incoming workload mixture. A queue 
with higher Pj(t) has higher priority, and more requests are read 
from it. The scheduler first should select a queue from which to 
fetch the next request. Then, the scheduler generates a random 
number between 0 and 1. The value of the random number 
falls into one of the ranges defined in (8), so the queue with 
index j related to the selected range is chosen. The scheduler 
then fetches a request from the selected queue and assigns it to 
the admission controller. Therefore, lower priority queues have 
a lower chance than higher priority queues to flow.  

VII. Admission Control Algorithm 

 The ideal behavior of an overloaded web server is to keep 
serving requests at its maximum capacity, even when the 
imposed load is beyond its capacity; however, servers are 
usually overloaded. To prevent overloading, an admission 
control mechanism should be devised in the web switch. 
Simple admission control mechanisms typically drop requests 
regardless of their impact on server resources. However, 
requests should not be treated equally. Different types of 
requests have different CPU demands; therefore, it is essential 
for the admission controller to consider these differences. Also, 
service providers are advised to rely on rough guidelines for 
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total utilization and avoid peak CPU utilization of over 70% 
[20]. Therefore, our admission controller algorithm begins its 
work when the average available capacity (ACC) of web 
servers in cluster becomes less than 0.3: 

1

( )

0.3.

M

i

AC i
MACC

Nm
== ≤
∑

           (9) 

The proposed admission control algorithm considers both 
the CPU demand of various classes of requests and their 
population in the web-switch queue to make decisions. We 
define the acceptance probability vector PA(t) which is 
calculated every Δt units of time (when the ACC value is less 
than 0.3) as     

{ }( ) (1), , ( ), , ( ) ,PA t Pa Pa j Pa C=        (10) 

where Pa(j) is the probability of accepting a request from class 
j and can be calculated as 

1

( ) ( )
( ) ( ).

( ) ( )

j
C

j
j

P t W j
Pa j ACC k

P t W j
=

×
= × ×

×∑
       (11) 

The first term is related to the weighted access probability. 
Therefore, a request from a class with a lower CPU demand 
and longer queue length has a higher chance of being accepted. 
The second term in (11) is a reduction term which permits only 
some requests to be accepted. This term is related to the ACC. 
Constant k is a scaling factor which maps the range [0,0.3] into 
[0,1], and its value in this case is 1/0.3=3.333.   

When a request arrives at the admission controller, it 
generates a random number between 0 and 1. If the generated 
number is smaller than the accepted probability of the request 
class, the request is accepted and assigned to the dispatcher; 
otherwise, it is dropped. In the implemented system, when the 
admission controller rejects a request, an error message (HTTP 
code 500) is sent to the client, and at the same time, the 
associated network socket is closed. A benchmarking tool 
recognizes the request as unsuccessful and logs it. Note that 
when the ACC is higher than 0.3, all requests are accepted. 

VIII. Performance Evaluation 

To evaluate the proposed load balancing algorithm, it was 
implemented on a cluster web server, and cluster throughput 
and average response time were selected as criteria [4]-[8]. We 
also implemented two commonly used load balancing 
algorithms WRR [4]-[8] and CAP [5]-[8] for comparison. We 
used the average CPU load as a load index for the WRR 
algorithm. We used the same classification method for CAP 
and the proposed estimation-based algorithm. In the following 

Table 1. Static workload specifications. 

Class File size range (kB) Probability of access 

C1 0.1<X<1 0.35 

C2 1<X<10 0.5 

C3 10<X<100 0.14 

C4 100<X<1000 0.01 

Table 2. Dynamic workload specifications. 

Class Processing time (ms) Probability of access 

C5 10 0.5 

C6 50 0.3 

C7 100 0.2 

 

 
sections, the workloads and implementation setups used in our 
experiments are given.  

1. Experimental Workload 

As previously mentioned, an actual web site may serve 
different percentages of static and dynamic contents. Therefore, 
we considered two main types of requests (static and dynamic) 
in synthetic workloads in our experiments. In [19], it was 
confirmed that the proportion of static requests in the Web has 
a heavy-tail distribution. In this kind of distribution, most 
documents are small in size (a few kB) and a small number of 
files are larger. Large files tend to contribute to the majority of 
server loads. Also, the service times of static files depend 
directly on the size of the files [19]. Larger files require longer 
service times; therefore, we used four classes of files with 
various size ranges and various access probabilities as the static 
file sets in our synthetic workload. The choice of workload and 
its parameters was adopted from frequently used benchmarks 
such as WebStone [21] and SPECweb99 [22]. Table 1 
summarizes the specifications used for static file sets in the 
synthetic workload. 

As in [7], [8], we also considered three classes of dynamic 
requests with various ranges of service time and occurrence 
probabilities as dynamic file sets in the synthetic workload. 
According to Table 2, the requests in class C5 emulate an 
activity that stresses the CPU, such as ciphering in a SSL 
connection. The requests in class C6 emulate queries to a 
database, and the requests in class C7 emulate queries to a 
database and ciphering the results. The request classes are 
characterized by a negative exponential distribution for the 
service time and have means of 10, 50, and 100 ms, 
respectively. Table 2 summarizes the specifications for 
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dynamic file sets of the synthetic workload.  
In the final synthetic workload, 80% of the file sets are 

dynamic, and 20% are static. The high percentage of dynamic 
file sets in the final synthetic workload conforms with 
workload characterizations of typical E-commerce sites [23], 
[24]. 

2. Experimental Architecture 

The cluster web server consisted of 17 machines. One 
machine was used as the web switch, and the other 16 
machines were used as web server nodes. The web server 
nodes were AMD Athlon 3.2 GHz CPUs with 512 MB of 
DDR RAM. The web-switch node was a dual AMD Opteron 
2218 dual-core 2.6 GHz CPU with 2 GB of DDR RAM. All 
the nodes were connected through a high-speed gigabit LAN 
switch. We used enough 2 GHz AMD Athlon machines as the 
client emulators to ensure that they would not become 
bottlenecked in any of our experiments.  

The distributed architecture of the cluster was hidden from 
the clients via a unique virtual IP address of the web switch. All 
the machines in the cluster ran Linux kernel 2.6 as an operating 
system. Also, we used Apache v.1.3.39 [25] as a web server, 
configured with a PHP v.5 [26] module as the server side 
scripting engine. We increased the maximum number of 
processes for each Apache instance to 512 to avoid connection 
refusals from the server when numerous clients simultaneously 
requested services. We observed that with that value, the 
number of Apache processes never limited the performance. 
The client workloads for the experiments were generated using 
a modified version of the synthetic workload generator and a 
web performance measurement tool called Httperf [27]. We 
first generated offline traces of synthetic user sessions and then 
replayed these traces using Httperf. Using the pre-generated 
traces guaranteed the repeatability of the tests, which is 
fundamental for a fair comparison between the load balancing 
algorithms. We varied the load on the site by varying the 
number of concurrent clients. In the synthetic workload, each 
user session consisted of a sequence of requests separated by 
user think time. The think time and session time were 
generated from a negative exponential distribution with means 
of 7 seconds and 15 minutes, respectively. These numbers 
conform to the TPC-W specifications [24]. 

IX. Experimental Results 

In the following sections, the results of our experiments are 
presented in terms of mean response time and throughput. 
Generally, an algorithm that achieves higher throughput and 
lower average response time better utilizes the cluster resources 

 

Fig. 3. Mean response time variation vs. number of clients. 
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and fairly balances the loads among server nodes. Web servers 
normally work below the nominal peak throughput. Note that 
there is almost a linear relationship between the average 
response time and the system load in this situation. However, 
under overload conditions, when a web server receives more 
requests than its maximum capacity, the response time of the 
web server starts to fluctuate and grows rapidly with the 
number of clients. The admission control mechanism helps to 
alleviate this problem by dropping the excessive requests and 
keeping the average response time within a certain range. We 
investigated these two important working conditions, low-load 
and overload conditions, in our experiments.  

1. Mean Response Time 

Figure 3 shows the average response time of the cluster web 
server for three load balancing algorithms under the synthetic 
workload.  

In the low-load situation, the average response time was 
slightly lower for the estimation-based algorithm in 
comparison to rival schemes. The WRR scheme with 2 
seconds average response time served 3,250 clients. In contrast, 
the CAP with the same average response time served 5,500 
clients. At the same time, the estimation-based algorithm 
served 8,400 clients in 2 seconds and did not serve any extra 
clients.  

The overload situation starts from the saturation point where 
the average response time for the WRR and the CAP 
algorithms become unstable and increase exponentially due to 
the lack of an admission control mechanism. It can be 
concluded that a better load balancing algorithm and use of 
admission control in the proposed estimation-based algorithm 
improves the performance of the cluster to accept more clients 
than the other two algorithms.  
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Fig. 4. Throughput variation vs. number of clients. 
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2. Throughput 

Figure 4 shows the throughput of the algorithms on the 
cluster in terms of the number of requests per second. For light 
loads, the throughput of a growing number of clients increases 
linearly.  

The estimation-based algorithm achieved slightly higher 
throughput in comparison to the other schemes. With 
additional clients, at the level of 1,280 req/s, the throughput 
reached its peak for the estimation-based algorithm when it 
was serving 8,500 clients. The saturation point of the CAP 
algorithm was at 1,020 req/s for 8,000 clients, and that of WRR 
was at 648 req/s for 5,500 clients. The lower throughput with 
the WRR and CAP schemes result from the fact that one or 
more web server(s) in the cluster reaches saturation point. 
When there are excessive requests in the web server, 
consequently many of them time out. The total overhead time 
of each timed-out request adds to unproductive work, while 
some requests do not even get any service. The wasted time 
causes drastic drops in the throughput of the cluster web server, 
while resource utilization remains at 100%.  

These results clearly indicate that the load balancer of the 
estimation-based algorithm works better than that of the two 
other algorithms. Also, under overload conditions, the 
estimation-based algorithm provides stable throughput due to 
the use of the admission control mechanism, while the two 
other algorithms face unstable conditions and their throughputs 
of CAP and WRR are diminished. In brief, the average request 
rate that can be served by the estimation-based algorithm 
scheme is about 1.25 times higher than with CAP and 1.97 
times higher than with WRR. 

X. Conclusion 

In this paper, we proposed a novel estimation-based load 

balancing algorithm with an admission control mechanism for 
cluster-based web servers. The proposed scheme classifies 
incoming requests based on their service time. We dynamically 
estimated server loads by tracking the number of outstanding 
requests from each class in each web server and considered 
their service demands. Then, the available capacity of each 
web server was used in load balancing and admission control 
decisions. We also considered the dynamically evaluated 
access probability of each class in the incoming workload for 
proposed scheduling and admission control decisions.  

The proposed scheme was implemented in a prototype 
cluster web server. The experimental results obtained from a 
synthetic workload showed that, due to better load balancing 
and admission control of the proposed scheme, the web cluster 
can accept a higher number of concurrent clients and keep the 
mean response time of the cluster lower than with the WRR 
and the CAP load balancing algorithms. However, the 
dispatcher can become bottlenecked in our proposed scheme. 
In this situation, we can use a cluster of cluster web servers. It 
consists of a layer-4 web switch in front of some layer-7 web 
switches. The layer-4 switch receives all requests and 
dispatches them among layer-7 switches with simple (RR, 
WRR, LC) algorithms. Each layer-7 switch implements our 
proposed algorithm and manages part of the web server. 
Current layer-4 hardware switches can handle many concurrent 
clients, so the proposed layer-7 switch does not seem to lead to 
bottlenecking for the cluster of cluster web servers. 
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