• Title/Summary/Keyword: Boosting

검색결과 967건 처리시간 0.165초

Comparison of three boosting methods in parent-offspring trios for genotype imputation using simulation study

  • Mikhchi, Abbas;Honarvar, Mahmood;Kashan, Nasser Emam Jomeh;Zerehdaran, Saeed;Aminafshar, Mehdi
    • Journal of Animal Science and Technology
    • /
    • 제58권1호
    • /
    • pp.1.1-1.6
    • /
    • 2016
  • Background: Genotype imputation is an important process of predicting unknown genotypes, which uses reference population with dense genotypes to predict missing genotypes for both human and animal genetic variations at a low cost. Machine learning methods specially boosting methods have been used in genetic studies to explore the underlying genetic profile of disease and build models capable of predicting missing values of a marker. Methods: In this study strategies and factors affecting the imputation accuracy of parent-offspring trios compared from lower-density SNP panels (5 K) to high density (10 K) SNP panel using three different Boosting methods namely TotalBoost (TB), LogitBoost (LB) and AdaBoost (AB). The methods employed using simulated data to impute the un-typed SNPs in parent-offspring trios. Four different datasets of G1 (100 trios with 5 k SNPs), G2 (100 trios with 10 k SNPs), G3 (500 trios with 5 k SNPs), and G4 (500 trio with 10 k SNPs) were simulated. In four datasets all parents were genotyped completely, and offspring genotyped with a lower density panel. Results: Comparison of the three methods for imputation showed that the LB outperformed AB and TB for imputation accuracy. The time of computation were different between methods. The AB was the fastest algorithm. The higher SNP densities resulted the increase of the accuracy of imputation. Larger trios (i.e. 500) was better for performance of LB and TB. Conclusions: The conclusion is that the three methods do well in terms of imputation accuracy also the dense chip is recommended for imputation of parent-offspring trios.

익스트림 그라디언트 부스팅을 이용한 지수/주가 이동 방향 예측 (Prediction of the Movement Directions of Index and Stock Prices Using Extreme Gradient Boosting)

  • 김형도
    • 한국콘텐츠학회논문지
    • /
    • 제18권9호
    • /
    • pp.623-632
    • /
    • 2018
  • 주가 이동 방향의 정확한 예측이 주식 매매에 관한 전략적 의사결정에 중요한 역할을 할 수 있기 때문에 투자자와 연구자 모두의 관심이 높다. 주가 이동 방향에 관한 기존 연구들을 종합해보면, 주식 시장에 따라서 그리고 예측 기간에 따라서 다양한 변수가 고려되고 있음을 알 수 있다. 이 연구에서는 한국 주식 시장을 대표하는 지수와 주식들을 대상으로 이동 방향 예측 기간에 따라서 어떤 데이터마이닝 기법의 성능이 우수한 것인지를 분석하고자 하였다. 특히, 최근 공개경쟁에서 활발히 사용되며 그 우수성이 입증되고 있는 익스트림 그라디언트 부스팅 기법을 주가 이동 방향 예측 문제에 적용하고자 하였으며, SVM, 랜덤 포리스트, 인공 신경망과 같이 기존 연구에서 우수한 것으로 보고된 데이터마이닝 기법들과 비교하여 분석하였다. 12년간 데이터를 사용하여 1일 후에서 5일 후까지의 이동 방향을 예측하는 실험을 통해서, 예측 기간과 종목에 따라서 선택된 변수들에 차이가 있으며, 1-4일 후 예측에서는 익스트림 그라디언트 부스팅이 다른 기법들과 부분적으로 동등함을 가지면서도 가장 우수함을 확인하였다.

신경망과 의사결정 나무를 이용한 충수돌기염 환자의 재원일수 예측모형 개발 (Length-of-Stay Prediction Model of Appendicitis using Artificial Neural Networks and Decision Tree)

  • 정석훈;한우석;서용무;이현실
    • 한국산학기술학회논문지
    • /
    • 제10권6호
    • /
    • pp.1424-1432
    • /
    • 2009
  • 충수돌기염 환자의 LoS(Length of Stay)를 예측하는 것은 병상의 운영에 적지 않은 영향을 준다. 본 논문에서는 Neural Networks와 Decision Tree를 이용하여 LoS와 연관이 높은 입력변수들을 찾아 그 의미를 분석하며, 찾아낸 입력변수들을 이용하여 다양한 LoS 예측 모형을 개발하고 그 성능을 비교하였다. 모형의 예측 정확성을 높이기 위하여 Bagging과 Boosting 등의 Ensemble 기법도 적용하였다. 실험 결과, Decision Tree 모형이 Neural Networks 모형보다 좀 더 적은 수의 속성을 가지고도 거의 통일한 예측력을 보였으며, Ensemble 기법 중에서는 Bagging 기법이 Boosting 기법보다 좋은 결과를 보여주었다. 의사결정나무 기법은 Neural Networks 기법에 비해 설명력이 있으며, 충수돌기염의 LoS 예측에 매우 효과적이었고, 중요 입력 변수의 선정에도 좋은 결과를 보여줌에 따라 향후 적극적인 기법의 도입이 필요하다고 할 수 있다.

앙상블 구성을 이용한 SVM 분류성능의 향상 (Improving SVM Classification by Constructing Ensemble)

  • 제홍모;방승양
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권3_4호
    • /
    • pp.251-258
    • /
    • 2003
  • Support Vector Machine(SVM)은 이론상으로 좋은 일반화 성능을 보이지만, 실제적으로 구현된 SVM은 이론적인 성능에 미치지 못한다. 주 된 이유는 시간, 공간상의 높은 복잡도로 인해 근사화된 알고리듬으로 구현하기 때문이다. 본 논문은 SVM의 분류성능을 향상시키기 위해 Bagging(Bootstrap aggregating)과 Boosting을 이용한 SVM 앙상블 구조의 구성을 제안한다. SVM 앙상블의 학습에서 Bagging은 각각의 SVM의 학습데이타는 전체 데이타 집합에서 임의적으로 일부 추출되며, Boosting은 SVM 분류기의 에러와 연관된 확률분포에 따라 학습데이타를 추출한다. 학습단계를 마치면 다수결 (Majority voting), 최소자승추정법(LSE:Least Square estimation), 2단계 계층적 SVM등의 기법에 개개의 SVM들의 출력 값들이 통합되어진다. IRIS 분류, 필기체 숫자인식, 얼굴/비얼굴 분류와 같은 여러 실험들의 결과들은 제안된 SVM 앙상블의 분류성능이 단일 SVM보다 뛰어남을 보여준다.

Adaptive Boosting을 사용한 패커 식별 방법 연구 (Packer Identification Using Adaptive Boosting Algorithm)

  • 장윤환;박성준;박용수
    • 정보보호학회논문지
    • /
    • 제30권2호
    • /
    • pp.169-177
    • /
    • 2020
  • 악성코드 분석은 컴퓨터 보안의 중요한 관심사 중 하나로 분석 기법의 진보는 컴퓨터 보안의 중요 사항이 되었다. 기존에는 악성코드를 탐지할 때 Signature-based 방식을 사용하였으나 패킹된 악성코드의 비율이 높아지면서 기존 Signature-based 방식으로는 탐지에 어려움이 많아 졌다. 이에, 본 논문에서는 머신러닝을 사용하여 패킹된 프로그램의 패커를 식별하는 방법을 제안한다. 제안한 방법은 패킹된 프로그램을 파싱하여 패커를 특정 지을 수 있는 특정 PE 정보를 추출하고 머신러닝 모델 중 Adaptive Boosting 알고리즘을 사용하여 패커를 식별한다. 제안한 방법의 정확도를 확인하기 위해 12가지 종류의 패커로 패킹된 프로그램 391개를 수집하여 실험하였으며, 약 99.2%의 정확도로 패커를 식별하는 것을 알 수 있었다. 또한, Signature-based PE 식별 도구인 PEiD와 기존 머신러닝을 사용한 방법으로 식별한 결과를 제시하였으며, 본 논문에서 제안한 방법이 기존의 방법보다 패커를 식별하는데 정확도와 속도면에서 더 뛰어난 성능을 발휘하는 것을 알 수 있다.

청력 보정을 위한 고주파 증폭 회로 설계 (Design of High Frequency Boosting Circuits Compensating for Hearing Loss)

  • 이광;정영진
    • 전자공학회논문지
    • /
    • 제54권3호
    • /
    • pp.138-144
    • /
    • 2017
  • 본 논문에서는 노인성 난청으로 인한 청력도 감쇄를 보상하는 고주파 증폭 회로를 제안한다. 노인성 난청은 고음역(고주파 대역)의 청력도가 저음역(저주파대역)에 비해 더 떨어지는 저주파 통과 필터의 특성을 보이므로, 보상회로는 임계주파수 이상의 대역에서는 주파수에 비례하여 신호를 증폭하고 임계주파수 이하에서는 증폭도를 일정하게 유지하는 구조이다. 제안된 고주파 회로는 미분기, 단위 이득 증폭기로 구성된다. 임계주파수는 볼륨 조절 레버 형태로 간단하게 제어가 가능한 구조로 노인들이 자신의 난청정도에 따라 쉽게 증폭도를 조절할 수 있다. 고주파 증폭회로의 임계주파수는 가청주파수 전 대역에서 연속적으로 조절 가능하고, 10 kHz 음역의 신호는 80dB 이상 증폭도를 가진다.

머신러닝 기법을 활용한 낙동강 중류 지역의 Chl-a 예측 알고리즘 비교 연구(수질인자 및 수량 중심으로) (Comparison of machine learning algorithms for Chl-a prediction in the middle of Nakdong River (focusing on water quality and quantity factors))

  • 이상민;박경덕;김일규
    • 상하수도학회지
    • /
    • 제34권4호
    • /
    • pp.277-288
    • /
    • 2020
  • In this study, we performed algorithms to predict algae of Chlorophyll-a (Chl-a). Water quality and quantity data of the middle Nakdong River area were used. At first, the correlation analysis between Chl-a and water quality and quantity data was studied. We extracted ten factors of high importance for water quality and quantity data about the two weirs. Algorithms predicted how ten factors affected Chl-a occurrence. We performed algorithms about decision tree, random forest, elastic net, gradient boosting with Python. The root mean square error (RMSE) value was used to evaluate excellent algorithms. The gradient boosting showed 10.55 of RMSE value for the Gangjeonggoryeong (GG) site and 11.43 of RMSE value for the Dalsung (DS) site. The gradient boosting algorithm showed excellent results for GG and DS sites. Prediction value for the four algorithms was also evaluated through the Receiver operating characteristic (ROC) curve and Area under curve (AUC). As a result of the evaluation, the AUC value was 0.877 at GG site and the AUC value was 0.951 at DS site. So the algorithm's ability to interpret seemed to be excellent.

LED 백라이트를 위한 고속 스위칭 전류-펄스 드라이버 (A Fast-Switching Current-Pulse Driver for LED Backlight)

  • 양병도;이용규
    • 대한전자공학회논문지SD
    • /
    • 제46권7호
    • /
    • pp.39-46
    • /
    • 2009
  • 본 논문에서는 LED 백라이트를 위한 고속 스위칭 전류-펄스 드라이버(Current-Pulse Driver)를 제안하였다. 제안한 전류-펄스 드라이버는 드레인 정규화 전류미러(Regulated Drain Current Mirror : RD-CM)[1]와 고전압 NMOS 트랜지스터(High-Voltage NMOS Transistor : HV-NMOS)로 구성되었다. 동적 gain-boosting 앰프(Dynamic Gain-Boosting Amplifier : DGB-AMP)를 사용하여 전류-펄스 스위칭 응답속도를 향상시켰다. 출력 전류-펄스 스위치가 꺼졌을 때, RD-CM의 HV-NMOS 게이트 커패시턴스에 충전된 전하가 방전되지 않기 때문에 스위치가 다시 켜졌을 때, HV-NMOS 게이트 커패시턴스를 다시 충전할 필요가 없다. 제안한 전류-펄스 드라이버에서는 게이트 커패시턴스의 반복적인 충 방전 시간을 제거함으로써 전류-펄스 스위칭 동작을 고속으로 하도록 하였다. 검증을 위하여 SV/40V 0.5um BCD 공정으로 칩을 제작하였다. 제안한 전류-펄스 드라이버의 스위칭 지연시간을 기존 드라이버에서의 700ns에서 360ns로 줄일 수 있었다.

석곡(石谷) 이규준(李圭晙)의 "석공산고(石谷散稿)"번역 연구(I) (A Study on The "Seokgoksango(石谷散稿)" of Lee Gyujun(李圭晙)(I))

  • 권오민;박상영;안상영;한창현;안상우
    • 대한한의학원전학회지
    • /
    • 제22권3호
    • /
    • pp.161-185
    • /
    • 2009
  • This article looks into Lee Gyujun(李圭晙)'s life course, Confucian thoughts, and philosophical ideas on the Medicine of Boosting Yang by translating selectively his "Seokgoksango(石谷散稿)". Translating his works is a pre-requisite in order to fully understand the significance of boosting-yang theory in the historical landscape of Korean medicine, not just to comprehend the Medicine of Boosting Yang. First, it is found through the translation that a previous version of "Seokgoksango" had been probably printed before its existing version 1981. Secondly, there are numerous resistants to the Japanese ruling of Korea among his friendship. Thirdly, his academical root came from the Gihohakpa(畿湖學派) - the Giho school of Korean Seongli Confucianism[朝鮮性理學]. Its genealogy in Gyeongsang(慶尙) province is as follows: Lee Yi(李珥), Song Siyeol(宋時烈), Hong Jikpil(洪直弼), Seo Changyu(徐贊奎) and Lee Gyujun(李圭晙), and last, he kept contact with the Toegyehakpa(退溪學派), the Toegye school of Korean Seongli Confucianism, even though his academic root was closely linked to the Giho school. If the entire parts of "Seokgoksango" is translated, it will serve as invaluable historical document to understand a medical unfolding around the 20th century in Korea.

  • PDF

Genetic Algorithm과 다중부스팅 Classifier를 이용한 암진단 시스템 (Cancer Diagnosis System using Genetic Algorithm and Multi-boosting Classifier)

  • 온승엽;지승도
    • 한국시뮬레이션학회논문지
    • /
    • 제20권2호
    • /
    • pp.77-85
    • /
    • 2011
  • 생물 및 의학계에서는 생물정보학(bioinformatics)의 데이터 중 혈청 단백질(proteome)에서 추출한 데이터가 질병의 진단에 관련된 정보를 가지고 있고, 이 데이터를 분류 분석함으로 질병을 조기에 진단 할 수 있다고 믿고 있다. 본 논문에서는 혈청 단백질(2-D PAGE: Two-dimensional polyacrylamide gel electrophoresis)로부터 암과 정상을 판별하는 새로운 복합분류기를 제안한다. 새로운 복합 분류기에서는 support vector machine(SVM)와 다층 퍼셉트론(multi-layer perceptron: MLP)와 k-최근 접 이웃(k-nearest neighbor: k-NN)분류기를 앙상블(ensemble) 방법으로 통합하는 동시에 다중 부스팅(boosting) 방법으로 각 분류기를 확장하여 부분류기(subclassifier)의 배열(array)으로서 복합분류기를 구성하였다. 각 부분류기에서는 최적 특성 집합 (feature set)을 탐색하기 위하여 유전 알고리즘(genetic algorithm: GA)를 적용하였다. 복합분류기의 성능을 측정하기 위하여 암연구에서 얻어진 임상 데이터를 복합분류기에 적용하였고 결과로서 단일 분류기 보다 높은 분류 정확도와 안정성을 보여 주었다.