Mikhchi, Abbas;Honarvar, Mahmood;Kashan, Nasser Emam Jomeh;Zerehdaran, Saeed;Aminafshar, Mehdi
Journal of Animal Science and Technology
/
제58권1호
/
pp.1.1-1.6
/
2016
Background: Genotype imputation is an important process of predicting unknown genotypes, which uses reference population with dense genotypes to predict missing genotypes for both human and animal genetic variations at a low cost. Machine learning methods specially boosting methods have been used in genetic studies to explore the underlying genetic profile of disease and build models capable of predicting missing values of a marker. Methods: In this study strategies and factors affecting the imputation accuracy of parent-offspring trios compared from lower-density SNP panels (5 K) to high density (10 K) SNP panel using three different Boosting methods namely TotalBoost (TB), LogitBoost (LB) and AdaBoost (AB). The methods employed using simulated data to impute the un-typed SNPs in parent-offspring trios. Four different datasets of G1 (100 trios with 5 k SNPs), G2 (100 trios with 10 k SNPs), G3 (500 trios with 5 k SNPs), and G4 (500 trio with 10 k SNPs) were simulated. In four datasets all parents were genotyped completely, and offspring genotyped with a lower density panel. Results: Comparison of the three methods for imputation showed that the LB outperformed AB and TB for imputation accuracy. The time of computation were different between methods. The AB was the fastest algorithm. The higher SNP densities resulted the increase of the accuracy of imputation. Larger trios (i.e. 500) was better for performance of LB and TB. Conclusions: The conclusion is that the three methods do well in terms of imputation accuracy also the dense chip is recommended for imputation of parent-offspring trios.
주가 이동 방향의 정확한 예측이 주식 매매에 관한 전략적 의사결정에 중요한 역할을 할 수 있기 때문에 투자자와 연구자 모두의 관심이 높다. 주가 이동 방향에 관한 기존 연구들을 종합해보면, 주식 시장에 따라서 그리고 예측 기간에 따라서 다양한 변수가 고려되고 있음을 알 수 있다. 이 연구에서는 한국 주식 시장을 대표하는 지수와 주식들을 대상으로 이동 방향 예측 기간에 따라서 어떤 데이터마이닝 기법의 성능이 우수한 것인지를 분석하고자 하였다. 특히, 최근 공개경쟁에서 활발히 사용되며 그 우수성이 입증되고 있는 익스트림 그라디언트 부스팅 기법을 주가 이동 방향 예측 문제에 적용하고자 하였으며, SVM, 랜덤 포리스트, 인공 신경망과 같이 기존 연구에서 우수한 것으로 보고된 데이터마이닝 기법들과 비교하여 분석하였다. 12년간 데이터를 사용하여 1일 후에서 5일 후까지의 이동 방향을 예측하는 실험을 통해서, 예측 기간과 종목에 따라서 선택된 변수들에 차이가 있으며, 1-4일 후 예측에서는 익스트림 그라디언트 부스팅이 다른 기법들과 부분적으로 동등함을 가지면서도 가장 우수함을 확인하였다.
충수돌기염 환자의 LoS(Length of Stay)를 예측하는 것은 병상의 운영에 적지 않은 영향을 준다. 본 논문에서는 Neural Networks와 Decision Tree를 이용하여 LoS와 연관이 높은 입력변수들을 찾아 그 의미를 분석하며, 찾아낸 입력변수들을 이용하여 다양한 LoS 예측 모형을 개발하고 그 성능을 비교하였다. 모형의 예측 정확성을 높이기 위하여 Bagging과 Boosting 등의 Ensemble 기법도 적용하였다. 실험 결과, Decision Tree 모형이 Neural Networks 모형보다 좀 더 적은 수의 속성을 가지고도 거의 통일한 예측력을 보였으며, Ensemble 기법 중에서는 Bagging 기법이 Boosting 기법보다 좋은 결과를 보여주었다. 의사결정나무 기법은 Neural Networks 기법에 비해 설명력이 있으며, 충수돌기염의 LoS 예측에 매우 효과적이었고, 중요 입력 변수의 선정에도 좋은 결과를 보여줌에 따라 향후 적극적인 기법의 도입이 필요하다고 할 수 있다.
Support Vector Machine(SVM)은 이론상으로 좋은 일반화 성능을 보이지만, 실제적으로 구현된 SVM은 이론적인 성능에 미치지 못한다. 주 된 이유는 시간, 공간상의 높은 복잡도로 인해 근사화된 알고리듬으로 구현하기 때문이다. 본 논문은 SVM의 분류성능을 향상시키기 위해 Bagging(Bootstrap aggregating)과 Boosting을 이용한 SVM 앙상블 구조의 구성을 제안한다. SVM 앙상블의 학습에서 Bagging은 각각의 SVM의 학습데이타는 전체 데이타 집합에서 임의적으로 일부 추출되며, Boosting은 SVM 분류기의 에러와 연관된 확률분포에 따라 학습데이타를 추출한다. 학습단계를 마치면 다수결 (Majority voting), 최소자승추정법(LSE:Least Square estimation), 2단계 계층적 SVM등의 기법에 개개의 SVM들의 출력 값들이 통합되어진다. IRIS 분류, 필기체 숫자인식, 얼굴/비얼굴 분류와 같은 여러 실험들의 결과들은 제안된 SVM 앙상블의 분류성능이 단일 SVM보다 뛰어남을 보여준다.
악성코드 분석은 컴퓨터 보안의 중요한 관심사 중 하나로 분석 기법의 진보는 컴퓨터 보안의 중요 사항이 되었다. 기존에는 악성코드를 탐지할 때 Signature-based 방식을 사용하였으나 패킹된 악성코드의 비율이 높아지면서 기존 Signature-based 방식으로는 탐지에 어려움이 많아 졌다. 이에, 본 논문에서는 머신러닝을 사용하여 패킹된 프로그램의 패커를 식별하는 방법을 제안한다. 제안한 방법은 패킹된 프로그램을 파싱하여 패커를 특정 지을 수 있는 특정 PE 정보를 추출하고 머신러닝 모델 중 Adaptive Boosting 알고리즘을 사용하여 패커를 식별한다. 제안한 방법의 정확도를 확인하기 위해 12가지 종류의 패커로 패킹된 프로그램 391개를 수집하여 실험하였으며, 약 99.2%의 정확도로 패커를 식별하는 것을 알 수 있었다. 또한, Signature-based PE 식별 도구인 PEiD와 기존 머신러닝을 사용한 방법으로 식별한 결과를 제시하였으며, 본 논문에서 제안한 방법이 기존의 방법보다 패커를 식별하는데 정확도와 속도면에서 더 뛰어난 성능을 발휘하는 것을 알 수 있다.
본 논문에서는 노인성 난청으로 인한 청력도 감쇄를 보상하는 고주파 증폭 회로를 제안한다. 노인성 난청은 고음역(고주파 대역)의 청력도가 저음역(저주파대역)에 비해 더 떨어지는 저주파 통과 필터의 특성을 보이므로, 보상회로는 임계주파수 이상의 대역에서는 주파수에 비례하여 신호를 증폭하고 임계주파수 이하에서는 증폭도를 일정하게 유지하는 구조이다. 제안된 고주파 회로는 미분기, 단위 이득 증폭기로 구성된다. 임계주파수는 볼륨 조절 레버 형태로 간단하게 제어가 가능한 구조로 노인들이 자신의 난청정도에 따라 쉽게 증폭도를 조절할 수 있다. 고주파 증폭회로의 임계주파수는 가청주파수 전 대역에서 연속적으로 조절 가능하고, 10 kHz 음역의 신호는 80dB 이상 증폭도를 가진다.
In this study, we performed algorithms to predict algae of Chlorophyll-a (Chl-a). Water quality and quantity data of the middle Nakdong River area were used. At first, the correlation analysis between Chl-a and water quality and quantity data was studied. We extracted ten factors of high importance for water quality and quantity data about the two weirs. Algorithms predicted how ten factors affected Chl-a occurrence. We performed algorithms about decision tree, random forest, elastic net, gradient boosting with Python. The root mean square error (RMSE) value was used to evaluate excellent algorithms. The gradient boosting showed 10.55 of RMSE value for the Gangjeonggoryeong (GG) site and 11.43 of RMSE value for the Dalsung (DS) site. The gradient boosting algorithm showed excellent results for GG and DS sites. Prediction value for the four algorithms was also evaluated through the Receiver operating characteristic (ROC) curve and Area under curve (AUC). As a result of the evaluation, the AUC value was 0.877 at GG site and the AUC value was 0.951 at DS site. So the algorithm's ability to interpret seemed to be excellent.
본 논문에서는 LED 백라이트를 위한 고속 스위칭 전류-펄스 드라이버(Current-Pulse Driver)를 제안하였다. 제안한 전류-펄스 드라이버는 드레인 정규화 전류미러(Regulated Drain Current Mirror : RD-CM)[1]와 고전압 NMOS 트랜지스터(High-Voltage NMOS Transistor : HV-NMOS)로 구성되었다. 동적 gain-boosting 앰프(Dynamic Gain-Boosting Amplifier : DGB-AMP)를 사용하여 전류-펄스 스위칭 응답속도를 향상시켰다. 출력 전류-펄스 스위치가 꺼졌을 때, RD-CM의 HV-NMOS 게이트 커패시턴스에 충전된 전하가 방전되지 않기 때문에 스위치가 다시 켜졌을 때, HV-NMOS 게이트 커패시턴스를 다시 충전할 필요가 없다. 제안한 전류-펄스 드라이버에서는 게이트 커패시턴스의 반복적인 충 방전 시간을 제거함으로써 전류-펄스 스위칭 동작을 고속으로 하도록 하였다. 검증을 위하여 SV/40V 0.5um BCD 공정으로 칩을 제작하였다. 제안한 전류-펄스 드라이버의 스위칭 지연시간을 기존 드라이버에서의 700ns에서 360ns로 줄일 수 있었다.
This article looks into Lee Gyujun(李圭晙)'s life course, Confucian thoughts, and philosophical ideas on the Medicine of Boosting Yang by translating selectively his "Seokgoksango(石谷散稿)". Translating his works is a pre-requisite in order to fully understand the significance of boosting-yang theory in the historical landscape of Korean medicine, not just to comprehend the Medicine of Boosting Yang. First, it is found through the translation that a previous version of "Seokgoksango" had been probably printed before its existing version 1981. Secondly, there are numerous resistants to the Japanese ruling of Korea among his friendship. Thirdly, his academical root came from the Gihohakpa(畿湖學派) - the Giho school of Korean Seongli Confucianism[朝鮮性理學]. Its genealogy in Gyeongsang(慶尙) province is as follows: Lee Yi(李珥), Song Siyeol(宋時烈), Hong Jikpil(洪直弼), Seo Changyu(徐贊奎) and Lee Gyujun(李圭晙), and last, he kept contact with the Toegyehakpa(退溪學派), the Toegye school of Korean Seongli Confucianism, even though his academic root was closely linked to the Giho school. If the entire parts of "Seokgoksango" is translated, it will serve as invaluable historical document to understand a medical unfolding around the 20th century in Korea.
생물 및 의학계에서는 생물정보학(bioinformatics)의 데이터 중 혈청 단백질(proteome)에서 추출한 데이터가 질병의 진단에 관련된 정보를 가지고 있고, 이 데이터를 분류 분석함으로 질병을 조기에 진단 할 수 있다고 믿고 있다. 본 논문에서는 혈청 단백질(2-D PAGE: Two-dimensional polyacrylamide gel electrophoresis)로부터 암과 정상을 판별하는 새로운 복합분류기를 제안한다. 새로운 복합 분류기에서는 support vector machine(SVM)와 다층 퍼셉트론(multi-layer perceptron: MLP)와 k-최근 접 이웃(k-nearest neighbor: k-NN)분류기를 앙상블(ensemble) 방법으로 통합하는 동시에 다중 부스팅(boosting) 방법으로 각 분류기를 확장하여 부분류기(subclassifier)의 배열(array)으로서 복합분류기를 구성하였다. 각 부분류기에서는 최적 특성 집합 (feature set)을 탐색하기 위하여 유전 알고리즘(genetic algorithm: GA)를 적용하였다. 복합분류기의 성능을 측정하기 위하여 암연구에서 얻어진 임상 데이터를 복합분류기에 적용하였고 결과로서 단일 분류기 보다 높은 분류 정확도와 안정성을 보여 주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.