LCD backlight boosting and the integration of boosting and dimming are proposed based on image analysis to maximize perceptual image qualities and to reduce display system power. Based on the histogram of the image data, methods for selecting an image suitable for boosting and for adjusting the optimum backlight brightness are proposed. A comprehensive combined optimization method of LCD backlight boosting, dimming and bypass based on image characteristics is also described. Perceptual image quality enhancement and power consumption are evaluated based on well known image databases. Average subjective image quality is improved by 24.8%, RMS contrast is improved more than 20%, and average power consumption is reduced by 15.94% compared to conventional uniform boosting.
본 논문은 Particle Filtering과 계층적인 Boosting 알고리즘을 이용한 다중 객체 추적 기법을 제안한다. Particle Filtering을 이용하여 각 객체를 단일 객체로 추적하고 Boosting 기반의 데이터 연관 알고리즘을 사용하여 영상에서 움직이는 물체들을 추적한다. 본 제안한 알고리즘에서는 객체들의 이동경로 정확한 감지를 위해 Particle Filtering을 통해 각 객체가 움직이는 예측 정보를 이용하고, Boosting 알고리즘을 계측적인 형태로 설계함에 따라 데이터 물체의 추적 정확도를 높일 수 있도록 하였다.
A new PWM rectifier which offers a unity power factor is proposed. The circuit has same inductance as the conventional boosting type PWM rectifier in powering mode, but the inductance is splitted to 2 part in freewheeling mode. So the period of freewheeling mode is shorter than that of conventional boosting type PWM rectifier, and discontinuous input current is obtained in wide duty range. Therefore the proposed PWM rectifier accomplishs a unity power factor in wide range of duty ratio and boosting factor. And the conventional boosting type PWM rectifier has poor power factor near the unity boosting ratio, the proposed PWM rectifier improves this problem. The mathmatical analysis are presented and experimental results are given.
In this study, the machine learning which has been widely used in prediction algorithms recently was used. the research point was the CD(chudong) point which was a representative point of Daecheong Lake. Chlorophyll-a(Chl-a) concentration was used as a target variable for algae prediction. to predict the Chl-a concentration, a data set of water quality and quantity factors was consisted. we performed algorithms about random forest and gradient boosting with Python. to perform the algorithms, at first the correlation analysis between Chl-a and water quality and quantity data was studied. we extracted ten factors of high importance for water quality and quantity data. as a result of the algorithm performance index, the gradient boosting showed that RMSE was 2.72 mg/m3 and MSE was 7.40 mg/m3 and R2 was 0.66. as a result of the residual analysis, the analysis result of gradient boosting was excellent. as a result of the algorithm execution, the gradient boosting algorithm was excellent. the gradient boosting algorithm was also excellent with 2.44 mg/m3 of RMSE in the machine learning hyperparameter adjustment result.
A new Valley-fill circuit for improving PF(power factor) is proposed in this paper. The proposed topology combines Valley-fill rectifier and an additional inductor for boosting. In the proposed circuit, a shapc of input current is related to the PWM duty cycle. The boosting inductor makes improve PF by the electric charge transfer action. The operation principle and the shape of input current arc analyzed as applied the boosting inductor. The optimum value of boosting inductor is determined. A 100W single-stage converter has been designed and tested. Experimental results are presented to verify the validity of the proposed converter.
Journal of the Korean Data and Information Science Society
/
제13권2호
/
pp.55-64
/
2002
In this paper, we introduce SVM(support vector machine) developed to solve the problem of generalization of neural networks. We also introduce boosting algorithm which is a general method to improve accuracy of some given learning algorithm. We propose a new algorithm combining SVM and boosting to solve classification problem. Through the experiment with real and simulated data sets, we can obtain better performance of the proposed algorithm.
Journal of the Korean Data and Information Science Society
/
제16권4호
/
pp.999-1012
/
2005
We compare two popular algorithms in current machine learning and statistical learning areas, boosting method represented by AdaBoost and kernel based SVM (Support Vector Machine) using 13 real data sets. This comparative study shows that boosting method has smaller prediction error in data with heavy noise, whereas SVM has smaller prediction error in the data with little noise.
Although various research is being carried out to prevent the construction accidents, the number of victims of construction site is increasing continuously. Therefore, the purpose of this study is construction accidents prediction applying the boosting algorithm to the construction domains. Boosting algorithm was applied to construct construction accident prediction model and application of the model was examined using actual accident cases. It is possible to support safety manager to manage and prevent accidents in priority using the model.
본 논문에서는 복잡한 배경에서의 사람의 머리 추적에 있어서 효과적인 Adaptive Boosting에 의한 방법을 제안한다. 하나의 특징 추출 방법은 사람의 머리를 모델링하기에는 부족하다. 따라서 본 연구에서는 여러 가지 특징 추출 방법을 병행하여 정확한 머리 검출을 시도하였다. 머리 영상의 특징 추출은 sub-region과 Haar 웨이블릿 변환(Haar wavelet transform)을 이용하였다. Sub-region은 머리의 지역적인 특징을 나타내고, Haar 웨이블릿 변환은 얼굴의 주파수 특성을 나타내기 때문에 이들을 이용하여 특징을 추출하면 효과적인 모델링이 가능해 진다. 실시간으로 입력되는 영상에서 사람의 머리를 추적하기 위하여 제안하는 방법에서는 3가지 형태의 Harr-wavelet 특징을 AdaBoosting 알고리즘으로 학습한 후 결과를 이용하였다. 원래 AdaBoosting 알고리즘은 학습시간이 매우 길며 학습데이터가 변하면 다시 학습을 수행해야 하는 단점이 존재한다. 이 단점을 극복하기 위하여 제안하는 방법에서는 캐스케이드를 이용한 AdaBoosting의 효율적인 학습방법을 제안한다. 이 방법은 머리 영상에 대한 학습시간은 감소시키며, 학습데이터의 변화에도 효율적으로 대처할 수 있다. 이 방법은 학습과정을 레벨별로 분리한 후 중요도가 높은 학습데이터를 다음 단계에 반복적으로 적용시킨다. 제안하는 방법이 적은 학습 시간과 학습 데이터를 사용해서 우수한 성능을 가지는 분류기를 생성하였다. 또한, 이 방법은 다양한 머리데이터를 가진 실시간 영상데이터에 적용한 결과 다양한 머리를 정확하게 검출 및 추적하였다.
본 논문은 다중 객체 추적 시스템에 관한 연구로서, Online boosting 을 기반으로 다중 객체 추적 기술이 개발되었다. 기존의 Boosting 기반의 추적 기술과는 다르게 객체들간의 구별을 좀더 명확하게 하기 위하여, 프레임과 프레임간의 객체들끼리의 연결 시 공간적인 제약조건과 시간적 제약 조건을 이용하여 Online Boosting 알고리즘을 설계하였다. 본 시스템에서는 멀리 떨어져있는 객체들간에는 연관성이 낮다는 점을 보다 강력하게 고려하였기에 추적하는 과정에서 물체들끼리의 연관 오류가 줄어들었고, 이는 몇 개의 범용데이터를 이용한 실험을 통해 증명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.