• Title/Summary/Keyword: Boost-Converter

Search Result 1,288, Processing Time 0.022 seconds

Analysis of Parallel-Input Series-Output(PISO) Boost Converter With Output Voltage Balancing Characteristic (병렬입력/직렬출력(PISO) 부스트 컨버터의 출력 전압 밸런싱 특성 해석)

  • Nam, Hyun-Taek;Cha, Honnyong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • In this study, the output voltage balancing characteristics of parallel-input series-output (PISO) boost converter is analyzed. The PISO boost converter is derived by combining two basic boost converters. In comparison with the conventional three-level boost converter, the PISO boost converter can balance the output voltages under an unbalanced load condition without requiring additional circuit components and control strategy. A 2 kW prototype converter is built and tested to verify the output voltage balancing characteristics of the PISO boost converter.

Buck and Boost Photovoltaic Converter Driving Schemes under Low power level (태양광 저에너지 출력을 위한 Buck, Boost 컨버터 구동방식)

  • Kim, B.W.;Park, S.J.;Kim, K.H.;Son, M.H.;Cho, S.E.;Kim, C.U.
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.669-672
    • /
    • 2005
  • Normally, the buck converter is used for the charging converter of photovoltaic generator because this converter has good characteristics compare with boost and buck-booster converter But, in case of the sollar-cell voltage is lower than charging voltage, we cannot charge the sollar energy to the charger. So, in this paper, we proposed the novel hybrid converter using by combination of buck and boost converter for the charging converter of photovoltaic generator, as a results, it can operate buck, boost and buck-boost mode. The proposed novel converter has the same characteristics of the existent buck converter and furthermore it can operate as a boost converter. So, we can make the more effective photovoltaic charging system.

  • PDF

Advanced Three-Phase PFC Power Converters with Three-Phase Diode Rectifier and Four-Switch Boost Chopper

  • Nishimura Kazunori;Hirachi Katsuya;Hiraki Eiji;Ahmed Nabil A.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.356-365
    • /
    • 2006
  • This paper presents an improved three-phase PFC power rectifier with a three-phase diode rectifier cascaded four-switch boost converter. Its operating principle contains the operating principle of two conventional three-phase PFC power rectifiers: one switch boost converter type and a two switch boost converter type. The operating characteristics of the four switch boost converter type three-phase PFC power rectifier are evaluated from a practical point of view, being compared with one switch boost converter type and two switch boost converter topologies.

A Non-Isolated 3-Level High Step-Up Boost Converter With Output Voltage Balancing (출력 전압 밸런싱 기능을 가진 비절연형 3-레벨 고승압 부스트 컨버터)

  • Yun, Song-Hyun;Kang, Hyemin;Cha, Honnyong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.5
    • /
    • pp.464-470
    • /
    • 2015
  • In this paper, a non-isolated three-level high step-up boost converter with output voltage balancing is proposed. By adding one extra inductor to the conventional three-level boost converter, the proposed converter is derived. Compared with the traditional boost converter and the three-level boost converter, the proposed converter can obtain very high voltage conversion ratio, and the voltage and current stress of switching devices and diodes are reduced. A 2.7 kW prototype converter is built and tested to verify performances of the proposed converter.

Series-Parallel Connected Capacitor Type Boost Converter for a Single-Phase SRM

  • Lee, Dong-Hee;Liang, Jiang;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.388-395
    • /
    • 2010
  • An active boost converter for a single phase SRM using series-parallel connected capacitors is proposed in this paper. The proposed active boost converter has two diodes and one power switch with an anti-parallel diode and one additional boost capacitor. The additional boost capacitor could be series or parallel connected to the dc-link capacitor to produce proper excitation and demagnetization voltage. The proposed active boost converter can easily achieve a fast excitation and demagnetization from the capacitor connection. In this paper, series and parallel connected converters are reviewed, and the detailed operating modes as well as the voltage characteristics of the proposed converter are analyzed. The simulation and experimental results shows the effectiveness of the proposed active boost converter.

Boost Converter for High Performance Operating of Fuel Cell System (연료전지 시스템의 고효율운전을 위한 6상 BOOST CONVERTER)

  • Park, S.S.;Yoon, H.J.;Goo, T.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.867-869
    • /
    • 1993
  • In generally Boost Converter is used for Fuel Cell System. Because the output voltage of fuel cell is too small and greatly depends on the load condition, Boost Converter are required to boost and regulate the Fuel Cell voltage for per conversion efficiency. In this Paper, 6-phase Boost Converter is used to boost the Fuel Cell Voltage and regulate the output voltage. Multi phase converter hag some advantages such as low ripple and filter sine. About the Peak Current Control and compare of the Ripple Current of Boost Converter, we have studied.

  • PDF

1KW converter using boost-flyback topology (Boost-Flyback topology를 이용한 1KW급 Converter)

  • Hwang, Sun-Nam;Chae, Hyeng-Jun;Lim, Sung-Kyoo;Lee, Jun-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • This paper proposed DC-DC converter for fuel cell that have high voltage and high current output characteristics. It is required step-up converter to use by general power supply, because the general rated voltage of fuel cell is low about 20$\sim$50V. The miniaturization of converter and DC link voltage can be controlled and high quality of output voltage uses mainly DC-DC converter. The boost converter and buck-boost converter do not get high boosting ratio. It is that proposed boost-flyback converter. Through simulation and an experiment, it could get high boosting ratio and efficiency more than 90%.

  • PDF

Synchronous Soft Switching Boost Converter (동기형 소프트 스위칭 부스트 컨버터)

  • Kim, Jun-Gu;Kim, Jae-Hyung;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.187-189
    • /
    • 2008
  • This paper presents the synchronous soft switching boost converter. It is shown that the proposed converter effectively reduces conduction loss by using MOSFET device in place of diode in the conventional boost converter. Also, this soft switching boost converter can reduce switching loss using ZVS method through resonant inductor and capacitor. The proposed synchronous soft switching boost converter is suitable for PV generation system.

  • PDF

A Study on the Step-Up Converter with the New Topology Method (새로운 Topology 방식의 스텝 업(Step-Up) 컨버터에 관한 연구)

  • Jung, Hai-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.889-896
    • /
    • 2020
  • In general, there are various types of boost converters such as Boost converters, Buck-Boost converters, Flyback converters, Push-Pull converters, etc. Among them, Boost converters are the most widely used and step up converters in a very simple form. However, Boost converter has DCM mode operation, big ripple problem and RHPZ problem. In order to solve these problems, a converter to which the new topology was applied was presented, but among them, the KY converter improved the Boost converter's DCM mode operation, the big ripple problem and the RHPZ problem. However, the conventional KY converter has a drawback that the voltage gain is relatively lower than that of the Boost converter. Therefore, in this paper, we proposed a new KY converter that solves the problem of low voltage gain while having the advantages of the conventional KY converter.

A Study on High Efficiency Boost DC-DC Converter of Discontinuous Current Mode Control (전류불연속 제어의 고효율 부스트 DC-DC 컨버터에 관한 연구)

  • Kwak Dong-Kurl;Kim Choon-Sam
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.9
    • /
    • pp.431-436
    • /
    • 2005
  • This paper studies a novel boost DC-DC converter operated high efficiency for discontinuous current mode (DCM) control. The converter worked in DCM eliminates the complicated circuit control requirement, reduces a number of components, and reduces the used reactive components size. In the general DCM converter, the switching devices are turned-on the zero current switching (ZCS), and the switching devices must be switched-off at a maximum reactor current. To achieve the zero voltage switching (ZVS) at the switching turn-off, the proposed converter is constructed by using a new loss-less snubber circuit. Soft-switched operation of the proposed boost converter is verified by digital simulation and experimental results. A new boost converter achieves the soft-switching for all switching devices without increasing their voltage and current stresses. The result is that the switching loss is very low and the efficiency of boost DC-DC converter is high.