• Title/Summary/Keyword: Boost converter

Search Result 1,284, Processing Time 0.023 seconds

A Study on the High-Efficiency. High-Power-Factor AC/DC Boost Converter Using Energy Recovery (에너지 회생 스너버를 적용한 고효률, 고역률 AC/DC Boost 컨버터에 관한 연구)

  • Ryu, Chang-Gyu;Kim, Yong;Bae, Jin-Yong;Baek, Soo-Hyun;Choi, Geun-Soo;Gye, Sang-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.160-163
    • /
    • 2004
  • A passive lossless turn-on/turn-off snubber network is proposed for the boost PWM converter. Previous AC/DC PFC Boost Converter perceives feed forward signal of output for average current-mode control. Previous Boost Convertor, the Quantity of input current will be decreased by the decrease of output current in light load, and also Power factor comes to be decreased. Also the efficiency of converter will be decreased by the decrease of power factor. The proposed converter presents the good PFC, low line current harmonic distortions and tight output voltage regulations using energy recovery circuit. All of the semiconductor devices in the converter are turned on under exact or near zero voltage switching(ZVS). No additional voltage and current stresses on the main switch and main diode occur. To show the superiority of this converter is verified through the experiment with a 640W, 100kHz prototype converter.

  • PDF

Capacitor Bank Assisted Battery Fed Boost Converter for Self-electricity-generated Transportation Cart System (자가발전 이동 카트 시스템을 위한 배터리 - 캐패시터 뱅크를 갖는 부스트 컨버터)

  • Kong, Sung-Jae;Yang, Tae-Cheol;Kang, Kyung-Soo;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • A problem exists in the conventional transportation cart applications, in which an external power supply with mechanical contact connection (bus bar connection) is required to drive the motor. Therefore, continuous effort for maintenance is required, aside from the expensive bus bar connector. To solve this problem, a self-electricity-generated transportation cart system without bus bar has recently been introduced. In this system, a battery needs to store the power of the generated wheel, and a boost converter, which converts the low battery voltage to high bus voltage to drive the motor inverter, is necessary. However, since the instantaneous large current required for starting the motor is supplied from the battery, a battery with large size and volume should be adopted to withstand this large current. In this study, a boost converter that can supply a large instantaneous current by using super Capacitor string is proposed. The proposed converter can be realized with a small size and volume compared with the conventional battery-fed boost converter. Operational principles, analysis, and design of the proposed converter are presented, and experimental results are provided to validate the proposed converter.

Design of a PWM DC-DC Boost Converter with Adaptive Dead-Time Control Using a CMOS 0.18um Process (CMOS 0.18um 공정을 이용한 Dead-Time 적응제어 기능을 갖는 PWM DC-DC Boost 변환기 설계)

  • Hwang, In-Ho;Yoon, Eun-Jung;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.285-288
    • /
    • 2012
  • Since the non-overlapping gate driver used in conventional DC-DC boost converters generates fixed dead-times, the converters suffer from the body-diode conduction loss or the charge-sharing loss. To reduce the efficiency degradation due to these losses, this paper presents a PWM DC-DC boost converter with adaptive dead-time control. In light loads, power switching is also employed to increase the efficiency. The designed DC-DC boost converter can thus achieve high efficiency at wide current range. The proposed DC-DC boost converter has 3.3V output from a 2.5V input with 0.18um technology. It operates at 500KHz and has a maximum power efficiency of 97.8%.

  • PDF

Photovoltaic System with Multi-Phase Interleaved Boost Converter (다상부스트 컨버터를 적용한 태양광 발전시스템)

  • Lee, Joo-Hyuk;Jang, Su-Jin;Cha, Gil-Ro;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.59-62
    • /
    • 2007
  • In this paper, we composed solar generation system with multi-phase interleaved boost converter Solar generated voltage is low, so it has need of the boost power conversion device for supply power to normal load. The multi-phase interleaved boost converter is easy to boost voltage and it can be reduced both input current ripple and output voltage ripple because it is composed with multi-phase. We simulated and tested multi-phase interleaved boost converter applied three-phase.

  • PDF

Design and Implementation of Low Cost Boost Type Single-Phase Inverter System for Compensation of Voltage Sag (순간전압강하 보상을 위한 저가의 승압형 단상 인버터 시스템의 설계 및 구현)

  • Lee, Seung-Yong;Hong, Soon-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.85-92
    • /
    • 2012
  • In this paper, a 300[W] class boost type single-phase inverter system which can compensate voltage sag on source side is designed and implemented. This system is a two-stage conversion system composed of a boost converter and a PWM inverter. If the voltage sag has appeared at the point of common coupling, the boost converter would be operated to compensate it. The boost converter and the inverter were constructed on single smart power module(SPM) to implement low cost system. The system is designed for that the THD of output voltage is below 5[%]. Finally, the validity of the design for the inverter system is verified by both simulations and experiments.

Self-Excited Buck-Boost DC-DC Converter (자려식 승강압형 DC-DC 컨버터)

  • Lee, Seong-Gil;An, Tae-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.663-669
    • /
    • 1999
  • This paper presents new self excited DC-DC converters such as Buck-boost type, Buck type and also non-inverting Buck-boost type. The proposed converters has the following advantages: simple topology, small number of circuit components, easy control method. Therefore, these converters are suitable for the portable appliances with battery source. It is especially suited for low power DC-DC conversion applications where non isolation output power is usually required. The steady state characteristics of proposed self exciting Buck-boost DC-DC converter are analysis and the result shows good agreement with experimental value. Furthermore the experimental results for 50W class self oscillating Buck-boost DC-DC converter have been obtained, which demonstrate the high efficiency and good performance.

  • PDF

A Transformer-less Boost Converter with High Gain and Low Current Ripple for Fuel Cell Application (연료전지 응용을 위한 높은 승압비와 낮은 전류리플을 갖는 무변압기형 부스트 컨버터)

  • Yang, Jin-Young;Park, Chan-Ki;Choi, Se-Wan;Nam, Seok-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.79-87
    • /
    • 2008
  • Boost Converters have been used to step up and regulate the low and widely varing voltage from the fuel cell. A transformer-less boost converter which does not have lossy, bulky, and costly high frequency transformers has an advantage in applications where galvanic isolation is not required. In this paper a new transformer-less boost converter is proposed. The proposed boost converter has practically usuable 6 to 8 times of step up ratio and is suitable for fuel cell applications due to very low input and output current ripples. The proposed converter is verified through the theorical analysis, simulation and experimental waveform.

Development of PV Module Integrated Type Low Voltage Battery Charger using Cascaded Buck-Boost Converter (Cascaded Buck-Boost 컨버터를 이용한 태양광 모듈 집적형 저전압 배터리 충전 장치 개발)

  • Kim, Dong-Hee;Lee, Hee-Seo;Lee, Young-Dal;Lee, Eun-Ju;Lee, Tae-Won;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.471-477
    • /
    • 2012
  • In this paper, in order to use module integrated converter using cascaded buck-boost converter for a low battery charger in stand-alone system, a charging algorithm which considers photovoltaic and battery status and PWM controllers which are changed according to charging modes are proposed. The proposed algorithm consists of constant current mode, constant voltage mode and maximum power point tracking mode which enables the battery to charge with maximum power rate. This paper also presents design of cascaded buck-boost converter that is the photovoltaic charger system. A 150W prototype system is built according to verify proposed the charger system and the algorithm.

A Study on Buck-Boost DC-DC Converter of Soft Switching (소프트 스위칭형 벅-부스트 DC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.394-399
    • /
    • 2007
  • In this paper, we study on a novel Buck-Boost converter of high efficiency by soft switching method. The proposed Buck-Boost converter is applied to new soft switching method in restraint of increment of switching power loss in the conventional Buck-Boost converter. The soft switching circuit is designed to modification of a energy storage inductor and a snubber circuit used by the conventional converter, and then the proposed converter is simplified. The controlling switches of the proposed converter is operated with soft switching by a partial resonance behavior. The output voltage of the converter is regulated by PWM control technique. The discontinuous mode action of current flowing into inductor makes to simplify control method and control components. The proposed Buck-Boost converter is compared with the conventional converter. Some computer simulative results and experimental results are confirmed to the validity of the analytical results.

A New Three Winding Coupled Inductor-Assisted High Frequency Boost Chopper Type DC-DC Power Converter with a High Voltage Conversion Ratio

  • Ahmed Tarek;Nagai Shinichiro;Hiraki Eiji;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.99-103
    • /
    • 2005
  • In this paper, a novel circuit topology of a three-winding coupling inductor-assisting a high-frequency PWM boost chopper type DC-DC power converter with a high boost voltage conversion ratio and low switch voltage stress is proposed for the new energy interfaced DC power conditioner in solar photovoltaic and fuel cell generation systems. The operating principle in a steady state is described by using its equivalent circuits under the practical condition of energy processing of a lossless capacitive snubber. The newly-proposed power MOSFET boost chopper type DC-DC power converter with the three-winding coupled inductor type transformer and a single lossless capacitor snubber is built and tested for an output power of 500W. Utilizing the lower voltage and internal resistance power MOSFET switch in the proposed PWM boost chopper type DC-DC power converter can reduce the conduction losses of the active power switch compared to the conventional model. Therefore, the total actual power conversion efficiency under a condition of the nominal rated output power is estimated to be 81.1 %, which is 3.7% higher than the conventional PWM boost chopper DC power conversion circuit topology.