• 제목/요약/키워드: Boost algorithm

검색결과 274건 처리시간 0.025초

AdaBoost 알고리즘을 이용한 실시간 얼굴 검출 및 추적 (Real-Time Face Detection and Tracking Using the AdaBoost Algorithm)

  • 이우주;김진철;이배호
    • 한국멀티미디어학회논문지
    • /
    • 제9권10호
    • /
    • pp.1266-1275
    • /
    • 2006
  • 본 논문은 AdaBoost(Adaptive Boosting)알고리즘을 이용한 실시간 얼굴 검출 및 추적에 패한 기법을 제안한다. 얼굴 검출은 8종류의 간단한 웨이블릿 특징 모형을 이용한다. 각각의 특징들은 $20{\times}20$의 훈련 영상에서 다양한 크기와 위치로 배치되어 초기의 특징 집합을 구성한다. 초기의 특징 집합과 훈련 영상은 AdaBoost알고리즘의 입력으로 사용된다. AdaBoost알고리즘의 기본원리는 약한 분류기를 선형적으로 결합하여 최종적으로는 계층적 구조를 갖는 강한 분류기론 생성하는 것이다. 본 논문에서는 AdaBoost알고리즘에서 훈련 영상과 초기의 특징 집합 간에 이루어지는 반복적 계산량을 줄이기 위해 SAT(Summed-Area Table) 기법을 이용하였다. 얼굴 추적은 Pan-Tilt카메라를 통해 동적으로 가시 영역을 확장해 가면서 검출된 영역의 위치와 크기정보를 이용하여 실시간으로 이루어진다. 검출된 얼굴 영역의 중심을 전체 영상의 중심으로 이동하는 방법을 사용하였다. 실험결과 92.5%의 얼굴 검출율과 평균 12프레임의 얼굴 추적속도를 얻었다.

  • PDF

DCM Frequency Control Algorithm for Multi-Phase DC-DC Boost Converters for Input Current Ripple Reduction

  • Joo, Dong-Myoung;Kim, Dong-Hee;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2307-2314
    • /
    • 2015
  • In this paper, a discontinuous conduction mode (DCM) frequency control algorithm is proposed to reduce the input current ripple of a multi-phase interleaved boost converter. Unlike conventional variable duty and constant frequency control, the proposed algorithm controls the switching frequency to regulate the output voltage. By fixing the duty ratio at 1/N in the N-phase interleaved boost converter, the input current ripple can be minimized by ripple cancellation. Furthermore, the negative effects of the diode reverse recovery current are eliminated because of the DCM characteristic. A frequency controller is designed to employ the proposed algorithm considering the magnetic permeability change. The proposed algorithm is analyzed in the frequency domain and verified by a 600 W three-phase boost converter prototype that achieved 57% ripple current reduction.

AdaBoost와 ASM을 활용한 얼굴 검출 (Face Detection using AdaBoost and ASM)

  • 이용환;김흥준
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.105-108
    • /
    • 2018
  • Face Detection is an essential first step of the face recognition, and this is significant effects on face feature extraction and the effects of face recognition. Face detection has extensive research value and significance. In this paper, we present and analysis the principle, merits and demerits of the classic AdaBoost face detection and ASM algorithm based on point distribution model, which ASM solves the problems of face detection based on AdaBoost. First, the implemented scheme uses AdaBoost algorithm to detect original face from input images or video stream. Then, it uses ASM algorithm converges, which fit face region detected by AdaBoost to detect faces more accurately. Finally, it cuts out the specified size of the facial region on the basis of the positioning coordinates of eyes. The experimental result shows that the method can detect face rapidly and precisely, with a strong robustness.

다중 클래스 아다부스트 알고리즘 (Multiclass-based AdaBoost Algorithm)

  • 김태현;박동철
    • 전자공학회논문지CI
    • /
    • 제48권1호
    • /
    • pp.44-50
    • /
    • 2011
  • 본 논문은 다중 클래스 데이터의 효율적 분류를 위한 새로운 아다부스트 알고리즘을 제안한다. 기존의 아다부스트 알고리즘은 기본적으로 이진 분류기이므로 다중 클래스 데이터 분류의 적용에는 매우 제한적이었다. 이를 극복하기 위하여 제안된 알고리즘은 여러 개의 이진 분류기 대신 하나의 다중 분류기를 약 분류기로 사용함으로써 학습시간을 단축시키고 안정적인 정확도를 얻을 수 있는 장점이 있다. 제안하는 알고리즘의 성능을 평가하기 위하여 Caltech 영상 데이터베이스에서 4가지클래스의 영상 데이터를 총 800개 수집하여 영상 분류 실험을 진행하였다. 실험의 결과 제안된 다중 클래스 아다부스트 알고리즘은 Adaboost.M2 알고리즘에 비해 분류정확도는 대등한 결과를 얻었지만, 학습시간을 학습단계에 따라 83.1%까지 감소시킬 수 있었다.

시간 간격 특징 벡터를 이용한 AdaBoost 기반 제스처 인식 (AdaBoost-Based Gesture Recognition Using Time Interval Trajectory Features)

  • 황승준;안광표;박승제;백중환
    • 한국항행학회논문지
    • /
    • 제17권2호
    • /
    • pp.247-254
    • /
    • 2013
  • 본 논문에서는 키넥트 센서를 이용한 AdaBoost 기반 제스처 인식에 관한 알고리즘을 제안한다. 최근 스마트 TV에 대한 보급으로 관련 산업이 주목받고 있다. 기존 리모컨을 이용하여 TV를 컨트롤 하던 시대에서 벗어나 제스처를 이용하여 TV를 컨트롤 할 수 있는 새로운 접근을 제안한다. AdaBoost 학습 모델에 신체 정규화 된 시간 간격 특징 벡터의 집합을 특징 패턴으로 하여, 속도가 다른 동작들을 인식할 수 있도록 하였다. 또한 속도가 다른 다양한 제스처를 인식하기 위해 다중 AdaBoost 알고리즘을 적용하였다. 제안된 알고리즘을 실제 동영상 플레이어와 연결하여 적용하였고, 실험 후 좌표 변화를 이용한 알고리즘에 비해 정확도가 향상되었음을 확인하였다.

AdaBoost 알고리즘과 레이더 데이터를 이용한 채프에코 식별에 관한 연구 (A Study on Chaff Echo Detection using AdaBoost Algorithm and Radar Data)

  • 이한수;김종근;유정원;정영상;김성신
    • 한국지능시스템학회논문지
    • /
    • 제23권6호
    • /
    • pp.545-550
    • /
    • 2013
  • 패턴 인식 분야에 있어서 데이터 분류는 해당 데이터에서 유용한 정보를 추출하기 위해서 반드시 수행해야 하는 과정 중 하나이다. AdaBoost 알고리즘은 Boosting 알고리즘을 실제 데이터 분석에 이용할 수 있도록 개량한 것으로, Random guessing이나 Random forest와 같이 정확한 결과를 도출할 확률이 50%보다 조금 높은 약한 분류기와 가중치 값의 조합을 통해 높은 분류 성능을 가지는 강한 분류기를 생성하는 방법을 뜻한다. 본 논문에서는 AdaBoost 알고리즘을 이용하여 비강수에코 중 강수에코와 그 특성이 유사하여 기상 예보를 수행하는 데 방해가 되는 채프에코를 식별하는 알고리즘의 구현에 대한 연구를 수행하였다. 기상 현상 관측을 위해 사용하는 레이더 데이터를 정적 클러스터링과 동적 클러스터링 과정을 통해서 유사도를 기반으로 한 클러스터를 생성한 후, 이를 예보관의 채프에코 판별 결과에 따라 채프에코와 비채프에코로 나누어 학습 데이터를 구성한 후 AdaBoost 알고리즘에 적용하여 분류기를 구현하였다. 제안한 AdaBoost 알고리즘의 성능을 검증하기 위하여 실제 채프에코가 발생한 레이더 데이터를 적용하였으며, 실험 결과를 통해서 제안한 알고리즘이 효과적으로 채프에코를 분류할 수 있음을 확인하였다.

JointBoost 알고리즘을 이용한 기울어진 얼굴 검출 (Inclined Face Detection using JointBoost algorithm)

  • 정윤호;송영모;고윤호
    • 한국멀티미디어학회논문지
    • /
    • 제15권5호
    • /
    • pp.606-614
    • /
    • 2012
  • AdaBoost 알고리즘을 이용한 얼굴 검출 방법은 가장 빠르고 신뢰성 있는 얼굴 검출 알고리즘의 하나로 이를 향상하거나 확장한 많은 알고리즘들이 제안되었다. 그러나 이전의 접근들은 대부분 정면 얼굴만을 다루고 있고 AdaBoot 알고리즘을 정면과 기울어진 얼굴에 동일한 특징으로 적용함으로써 기울어진 얼굴에 대한 분별 성능이 제한적이었다. 또한 회전된 얼굴을 검출하기 위하여 입력된 영상을 회전하여 정면 얼굴 검출 방법을 적용하거나 회전된 각도에 따라 다른 검출기를 적용하는 기존 기법들은 연산량이 많고 검출률이 저하되는 문제를 가지고 있다. 본 논문에서는 이러한 문제를 극복하기 위해 JointBoost를 이용한 기울어진 얼굴 검출 방법을 제안한다. JointBoost를 통해 클래스간의 공유된 feature들를 찾음으로써 연산량과 샘플 복잡도를 감소시켰다. 실험 결과를 통해 제안된 방법의 검출률이 동일한 반복 횟수를 가지는 학습에서 기존의 AdaBoost 기법에 비해 2% 이상 우수함을 보인다. 또한 제안된 방법은 얼굴의 존재를 검출할 뿐만 아니라 기울어진 방향에 대한 정보도 제공할 수 있다.

An Improvement of AdaBoost using Boundary Classifier

  • 이원주;천민규;현창호;박민용
    • 한국지능시스템학회논문지
    • /
    • 제23권2호
    • /
    • pp.166-171
    • /
    • 2013
  • The method proposed in this paper can improve the performance of the Boosting algorithm in machine learning. The proposed Boundary AdaBoost algorithm can make up for the weak points of Normal binary classifier using threshold boundary concepts. The new proposed boundary can be located near the threshold of the binary classifier. The proposed algorithm improves classification in areas where Normal binary classifier is weak. Thus, the optimal boundary final classifier can decrease error rates classified with more reasonable features. Finally, this paper derives the new algorithm's optimal solution, and it demonstrates how classifier accuracy can be improved using the proposed Boundary AdaBoost in a simulation experiment of pedestrian detection using 10-fold cross validation.

Cascaded Buck-Boost 컨버터를 이용한 태양광 모듈 집적형 저전압 배터리 충전 장치 개발 (Development of PV Module Integrated Type Low Voltage Battery Charger using Cascaded Buck-Boost Converter)

  • 김동희;이희서;이영달;이은주;이태원;이병국
    • 전력전자학회논문지
    • /
    • 제17권6호
    • /
    • pp.471-477
    • /
    • 2012
  • In this paper, in order to use module integrated converter using cascaded buck-boost converter for a low battery charger in stand-alone system, a charging algorithm which considers photovoltaic and battery status and PWM controllers which are changed according to charging modes are proposed. The proposed algorithm consists of constant current mode, constant voltage mode and maximum power point tracking mode which enables the battery to charge with maximum power rate. This paper also presents design of cascaded buck-boost converter that is the photovoltaic charger system. A 150W prototype system is built according to verify proposed the charger system and the algorithm.

에지 분석과 에이다부스트 알고리즘을 이용한 차량검출 (Vehicle Detection Using Edge Analysis and AdaBoost Algorithm)

  • 송광열;이기용;이준웅
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.1-11
    • /
    • 2009
  • This paper proposes an algorithm capable of detecting vehicles in front or in rear using a monocular camera installed in a vehicle. The vehicle detection has been regarded as an important part of intelligent vehicle technologies. The proposed algorithm is mainly composed of two parts: 1)hypothesis generation of vehicles, and 2)hypothesis verification. The hypotheses of vehicles are generated by the analysis of vertical and horizontal edges and the detection of symmetry axis. The hypothesis verification, which determines vehicles among hypotheses, is done by the AdaBoost algorithm. The proposed algorithm is proven to be effective through experiments performed on various images captured on the roads.