• Title/Summary/Keyword: Boost DC-DC Converter

Search Result 705, Processing Time 0.026 seconds

DAB Converter Based on Unified High-Frequency Bipolar Buck-Boost Theory for Low Current Stress

  • Kan, Jia-rong;Yang, Yao-dong;Tang, Yu;Wu, Dong-chun;Wu, Yun-ya;Wu, Jiang
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.431-442
    • /
    • 2019
  • This paper proposes a unified high-frequency bipolar buck-boost (UHFBB) control strategy for a dual-active-bridge (DAB), which is derived from the classical buck and boost DC/DC converter. It can achieve optimized current stress of the switches and soft switching in wider range. The UHFBB control strategy includes multi-control-variables, which can be achieved according to an algorithm derived from an accurate mathematical model. The design method for the parameters, such as the transformer turns ratio and the inductance, are shown. The current stress of the switches is analyzed for selecting an optimal inductor. The analysis is verified by the experimental results within a 500W prototype.

72[W] Power LED Photovoltaic Lighting System including the Current Limiting Function (전류제한 기능을 갖는 72[W ]급 파워 LED 태양광 보안등)

  • Park, Hyo-Sik;Han, Woo-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2999-3004
    • /
    • 2010
  • In comparison with some other light sources, LED has merits such as long lifetime, pollution free, and high energy efficiency. Lately, due to development of LED with high brightness and capacity, LED, which has been applied in display system only, has applied in the field of lighting system. As power LED for lighting system can be burned out by heat problem, the driving current of power LED has to be controlled below the designed value. In this paper, power LED photovoltaic lighting system, which has the current limitting function, has been described. After photovoltaic power is generated from PV panel. it is charged into a battery. And then, after the charged power is converted to DC24[V] through a boost DC-DC converter, it is supplied to power LED at night. It has been validated by designing and testing of 72[W] power LED lighting system, which includes a PV charger, a boost DC-DC converter and a current limiter for driving power LED.

DC/AC converters for the power generating system using fuel cell (연료전지 발전 시스템의 직류/교류 변환기)

  • Kim, Y.H.;Kwon, G.H.;Kim, J.S.;Jung, Y.H.;Choi, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1035-1037
    • /
    • 1992
  • Generally, fuel cell has characteristics of low voltage, large current and voltage variation under load change. Therefore, DC output voltage of fuel cell is too low to convert into AC with high efficiency and good performance. For this reason, fuel cell generating system is composed of DC-DC converter and inverter in cascade. This paper used 2-phase boost DC-DC converter to obtain low distortion waveform and reduce input-output current ripple, and discussed inverter which can be operated in independent drive mode and utility line interface drive mode. Then, the change of modes can be achived smoothly.

  • PDF

Novel ZVZCS PWM DC-DC Converters with One Auxiliary Switch (단일 보조 스위치를 이용한 새로운 ZVZCS PWM DC-DC 컨버터)

  • 유승희;이동윤;유상봉;현동석
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.28-32
    • /
    • 1998
  • This paper presents novel ZVZCS PWM DC-DC converters. The proposed soft-switching technique achieves ZVS and ZCS simultaneously at both turn-on and turn-off of the main switch and diode by using only one auxiliary switch. Also, the proposed soft-switching technique is suitable for not only minority but also majority carrier semiconductor devices. The auxiliary circuit of the proposed topology is placed out the main power path and therefore, there are no voltage/current stresses on the main switch and diode. The operating principle of the proposed circuit is illustrated by a detailed study with the boost converter as an example. The validity of the proposed converter is verified by theoretical analysis, simulation and experiment results.

  • PDF

Design and control of a DC-DC converter for electric vehicle applications (전기자동차 응용을 위한 DC-DC 컨버터의 설계 및 제어)

  • Kang Jeong-il;Roh Chung-Wook;Lee Sung-Sae;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.754-758
    • /
    • 2002
  • In the fuel-cell electric vehicle system, the low-voltage output of unit fuel-cell demands a number of cells to be stacked In series to produce a DC link voltage which is high enough to drive the vehicle inverter system. However, this increases the complexity of the fuel-cell control system. This paper presents a design of high-efficiency boost converter employing the average current-mode control, which is able to convert a low voltage of a fuel-cell generator with a small number of unit cells to a stable and high DC link voltage for electric vehicle applications.

  • PDF

50kW DC-DC Converter for V2G Fast Charger with Wide Charging Voltage Range (넓은 충전전압범위를 갖는 V2G 급속충전기용 50kW급 DC-DC컨버터)

  • Lee, Donghan;Le, Tat Thang;Kim, Sunju;Jeong, Hyeonju;Choi, Sewan;Yu, Seungyeong;Yang, Daeki
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.356-357
    • /
    • 2019
  • 본 논문에서는 넓은 충전 전압 범위와 V2G 기능을 갖는 급속 충전기용 DC-DC 컨버터를 제안한다. 제안한 컨버터는 SRC(Series Resonant Converter)와 2상 Buck/Boost 컨버터로 구성된 2-stage 구조로써 넓은 충전 전압 범위에 적합하며, 배터리 충전뿐만 아닌 V2G(Vehicle to Grid) 동작이 가능하다. 또한 2상 인터리빙 방식을 사용함으로써 전류 분담을 통해 소자의 전류 정격 및 출력 필터 사이즈를 낮출 수 있다. 제안하는 컨버터의 시작품 실험을 통해 타당성을 검증하였다.

  • PDF

Design of Low-Area DC-DC Converter for 1.5V 256kb eFlash Memory IPs (1.5V 256kb eFlash 메모리 IP용 저면적 DC-DC Converter 설계)

  • Kim, YoungHee;Jin, HongZhou;Ha, PanBong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.144-151
    • /
    • 2022
  • In this paper, a 1.5V 256kb eFlash memory IP with low area DC-DC converter is designed for battery application. Therefore, in this paper, 5V NMOS precharging transistor is used instead of cross-coupled 5V NMOS transistor, which is a circuit that precharges the voltage of the pumping node to VIN voltage in the unit charge pump circuit for the design of a low-area DC-DC converter. A 5V cross-coupled PMOS transistor is used as a transistor that transfers the boosted voltage to the VOUT node. In addition, the gate node of the 5V NMOS precharging transistor is made to swing between VIN voltage and VIN+VDD voltage using a boost-clock generator. Furthermore, to swing the clock signal, which is one node of the pumping capacitor, to full VDD during a small ring oscillation period in the multi-stage charge pump circuit, a local inverter is added to each unit charge pump circuit. And when exiting from erase mode and program mode and staying at stand-by state, HV NMOS transistor is used to precharge to VDD voltage instead of using a circuit that precharges the boosted voltage to VDD voltage. Since the proposed circuit is applied to the DC-DC converter circuit, the layout area of the 256kb eFLASH memory IP is reduced by about 6.5% compared to the case of using the conventional DC-DC converter circuit.

Peak Voltage Feedforward Control of PWM Buck-boost Converter (피드포워드 제어 방식을 적용한 승강압형 컨버터)

  • Gwag, Gun-Hee;Seo, Bo-Hyeok;Choi, Byung-Cho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2721-2723
    • /
    • 1999
  • DC and small-signal ac characteristics are examined for a pulse-width modulated (PWM) dc-dc buck-boost converter with a peak voltage modulation (PVM) feedforward control. Circuit model is used to derive an expression for the output voltage in terms of the input voltage and load resistance. Small-signal circuit model is used to derive the input-to-output voltage transfer function (audiosusceptibility).

  • PDF

Study on Resonant PWM Switching Technique for $3{\phi}$ Boost AC/DC Converter with High Power Factor and Less Switching Loss (3상 승압형 AC/DC 컨버터의 고역율과 스위칭 손실 저감을 위한 공진 PWM 스위칭 기법에 관한 연구)

  • Yi, Eun-Gyu;Noh, Yung-Nam;Kim, Beung-Jin;Jeon, Hee-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.541-543
    • /
    • 1997
  • In this paper, a proposed resonant PWM switching technique makes the boost AC/DC converter to high input power factor and less switching loss. Also, the switching control scheme is used which minimize harmonic components employing novel PWM technique. In addition, an employment of resonant circuit for switching makes zero current switching(ZCS) and zero voltage switching(ZVS) for control switches without switching losses. The result shows that high power factor is still for varying load and switching loss is very low.

  • PDF

Improvement of Switching Converter's Input Wave Using VIENNA Rectifier (VIENNA 정류기를 이용한 스위칭 컨버터의 입력 파형 개선)

  • Jung, Hun-Sun;Choi, Jae-Ho;Chung, Gyo-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.201-204
    • /
    • 2007
  • This paper proposes a improvement of switching converter's input wave form using VIENNA Rectifier(three-phase three-switch three-level PWM Rectifier). VIENNA Rectifier is based on the combination of a three-phase diode bridge and dc/dc boost converter. It can be available to get sinusoidal mains current, and low-blocking voltage stress on rower transistors. In addition, it can control output voltage.

  • PDF