• Title/Summary/Keyword: Boost DC-DC Converter

Search Result 705, Processing Time 0.031 seconds

ZVT PWM AC-DC Boost Converter with Active Snubber (능동 스너버를 갖는 ZVT PWM AC-DC 승압 컨버터)

  • Kim, Choon-Sam;Sung, Won-Ki;Lee, Jung-Moon;Choi, Chan-Sok;Kim, Soo-Hong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.214-220
    • /
    • 2008
  • Most of converter system could obtain almost unity power factor and make input current sinusoidal waveform, but they have many problems, such as electromagnetic interference and switching losses caused by switching noise in main switch. To solve these problems in hard switching PFC converter, soft switching converter using a resonant between capacitor and inductor is invented In this paper, advantages and disadvantages of conventional ZVT(Zero-Voltage-Transition) soft switching converter using a auxiliary resonant circuit is discussed. Then Improved ZVT soft switching converter proposed. This improved ZVT converter's operation principal, specific property, design scheme of main are described. From Simulation and experiment results of conventional ZVT soft switching and improved ZVT soft switching converter with active snubber, characteristics of the converter are confirmed.

Small Signal Analysis and Controller Design for Interleaved DC-DC Dual Boost Converter in Continuous Current Mode (연속 전류 모드에서 Interleaved DC-DC Dual Boost 컨버터 소 신호 해석 및 제어기 설계)

  • Park, Sang-Eun;Sohn, Seung-Chan;Seong, Se-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.378-380
    • /
    • 1999
  • Interleaved dual boost 컨버터는 전력분배 시스템에서 입력 전류 리플을 줄이고 스위칭 손실을 줄일 수 있고, 필터 없이 입력라인 고조파 성분을 줄일 수 있으며, 더불어 역률 개선의 효과를 이룰 수 있다. 본 논문에서는 Interleaved Dual Boost(IDB) 컨버터를 운전하는 경우에 있어서 상태 공간 평균화법을 사용하여 소 신호 해석을 수행하였다. 그 해석 결과로 얻진 제어 전달 함수를 바탕으로 IDB 컨버터에 적합한 수 개의 제어기를 설계하였다. 시뮬레이션을 행한 결과로 얻어진 여러 가지 제어기 타입의 각 특성을 분석하고 그 중 IDB 컨버터로 가장 적절한 제어기를 제안하였다.

  • PDF

A Study on the DC-DC Converter to Charge and Discharge Secondary Batteries (이차전지 충방전용 직류-직류 변환기에 관한 연구)

  • Chae, Soo-Yong;Seo, Young-Min;Chung, Dae-Taek;Yoon, Duck-Yong;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.235-237
    • /
    • 2006
  • This paper proposes a DC-DC converter which is able to charge and discharge secondary batteries. The converter operates as a double-ended forward converter in charging process and as electrical isolated boost converter in discharging process. The converter is designed for continuous current operation. The switching frequency is selected as 100kHz to reduce the size of both the inductor and the capacitor.

  • PDF

Novel Modular 3-phase AC-DC Flyback Converter for Telecommunication

  • Park, Ju-Yeop;Lee, Jong-Pil;Kim, Taek-Yong;Song, Joong-Ho;Ick Choy
    • Journal of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.212-219
    • /
    • 2002
  • A novel mode of parallel operation of a modular 3-phase AC-DC flyback converter for power factor correction along with tight regulation was recently analyzed and presented. The advantage of the proposed converter does not require expensive high voltage and high current devices that are normally needed in popular boost type 3-phase converter. In this paper tile detailed small signal analysis of the modular 3-phase AC-DC flyback converter is provided for control purpose and also experimental results are included to confirm the validity of the analysis.

A New Soft Switching Converter for Photovoltaic System (태양광용 새로운 소프트 스위칭 컨버터)

  • Won, Dong-Jo;Park, Sang-Hoon;Park, So-Ri;Lee, Su-Won;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.133-136
    • /
    • 2008
  • This paper presents a novel soft switching topology with resonant DC-DC converter and inverter. The resonant DC-DC converter consists of the auxiliary switch, resonant capacitor and inductor. All switches in the proposed topology is turn on at ZCS and turn off at ZVS operation. The proposed soft switching technology can be obtained the reduced switching losses and voltage and current stress of the power devices. Therefore, the resonant converter efficiency is higher than conventional boost converter. Simulation results on a 1kW soft switching converter are presented.

  • PDF

Design and Implementation of Photovoltaic Power Conditioning System using a Current-based Maximum Power Point Tracking

  • Lee, Sang-Hoey;Kim, Jae-Eon;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.606-613
    • /
    • 2010
  • This paper proposes a novel current-based maximum power point tracking (CMPPT) method for a single-phase photovoltaic power conditioning system (PV PCS) by using a modified incremental conductance method. The CMPPT method simplifies the entire control structure of the power conditioning system and uses an inherent current source characteristic of solar cell arrays. Therefore, it exhibits robust and fast response under a rapidly changing environmental condition. Digital phase locked loop technique using an all-pass filter is also introduced to detect the phase of grid voltage, as well as the peak voltage. Controllers of dc/dc boost converter, dc-link voltage, and dc/ac inverter are designed for coordinated operation. Furthermore, a current control using a pseudo synchronous d-q transformation is employed for grid current control with unity power factor. A 3 kW prototype PV PCS is built, and its experimental results are given to verify the effectiveness of the proposed control schemes.

Design and Control of a DC-DC Converter for Electric Vehicle Applications (전기자동차 응용을 위한 DC-DC 컨버터의 설계 및 제어)

  • 노정욱;이성세;문건우;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.587-595
    • /
    • 2002
  • Recently, the electric vehicles which are powered by such sources as battery, solar cell, fuel-cell, and so forth attract increasing attention. However, the unit cell voltages of these power sources are so low that a number of cells should be stacked in series to drive the vehicle inverter systems, which increases the complexity of the structure of power source. In this paper, a high-efficiency high-power boost converter for electric vehicle applications, which is able to convert a relatively low source voltage into a sufficiently high regulated DC link voltage, is proposed, and the design guidelines and the experimental results are presented.

Nonisolated Two-Phase Bidirectional DC-DC Converter with Zero-Voltage-Transition for Battery Energy Storage System

  • Lim, Chang-Soon;Lee, Kui-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2237-2246
    • /
    • 2017
  • A nonisolated two-phase bidirectional dc-dc converter (NTPBDC) is a very attractive solution for the battery energy storage system (BESS) applications due to the high voltage conversion ratio and the reduced conduction loss of the switching devices. However, a hard-switching based NTPBDC decreases the overall voltage conversion efficiency. To overcome this problem, this paper proposes a novel NTPBDC with zero-voltage-transition (NTPBDC -ZVT). The soft-switching for the boost and buck main switches is achieved by using a resonant cell, which consists of a single resonant inductor and four auxiliary switches. Furthermore, due to the single resonant inductor, the proposed NTPBDC-ZVT has the advantages of simple implementation, reduced size, and low cost. The validity of the proposed NTPBDC-ZVT is verified through experimental results.

Development of Bi-directional DC/DC Converter for the 42V Vehicle Energy management System (42V 차량용 에너지 관리장치를 위한 양방향 DC/DC 컨버터의 개발)

  • Kim In-Ju;Lee Sung-Sae;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.446-450
    • /
    • 2004
  • The amount of electric energy used in a vehicle will be increased continuously. The increment of electric power demand causes interest on new higher power system such as 42V Power Net. Furthermore, the necessity for development of energy storage device is highlighted recently. Bidirectional nm Converter is one of the important parts in 42V power system. Therefore, this paper proposes bidirectional Cascade Buck-Boost DC/DC Converter which can satisfies required specifications in 42V power system The operation principle is described along with simple control method, and experimental results on a 500W prototype are provided.

  • PDF

A Soft Switching Bidirectional DC-DC Converter Using ZCT method (ZCT 방식을 이용한 양방향 소프트 스위칭 DC-DC 컨버터)

  • Lee, Il-Ho;Park, Kun-Wook;Jung, Doo-Yong;Kim, Jae-Hyung;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.479-480
    • /
    • 2010
  • In this paper, the bi-directional soft switching DC-DC converter using ZCT(Zero Current Transition) method is proposed for using battery application system. This topology is composed of soft switching bi-directional buck/boost converter having the ZCT auxiliary circuit with two switches, two resonant capacitors, one resonant inductor. Therefore, the proposed topology can reduce switching loss. To verify the validity of the proposed topology, theoretical analysis and simulation results are presented.

  • PDF