• 제목/요약/키워드: Boost DC/DC converter

검색결과 704건 처리시간 0.029초

Single-Phase Bridgeless Zeta PFC Converter with Reduced Conduction Losses

  • Khan, Shakil Ahamed;Rahim, Nasrudin Abd.;Bakar, Ab Halim Abu;Kwang, Tan Chia
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.356-365
    • /
    • 2015
  • This paper presents a new single phase front-end ac-dc bridgeless power factor correction (PFC) rectifier topology. The proposed converter achieves a high efficiency over a wide range of input and output voltages, a high power factor, low line current harmonics and both step up and step down voltage conversions. This topology is based on a non-inverting buck-boost (Zeta) converter. In this approach, the input diode bridge is removed and a maximum of one diode conducts in a complete switching period. This reduces the conduction losses and the thermal stresses on the switches when compare to existing PFC topologies. Inherent power factor correction is achieved by operating the converter in the discontinuous conduction mode (DCM) which leads to a simplified control circuit. The characteristics of the proposed design, principles of operation, steady state operation analysis, and control structure are described in this paper. An experimental prototype has been built to demonstrate the feasibility of the new converter. Simulation and experimental results are provided to verify the improved power quality at the AC mains and the lower conduction losses of the converter.

2단 역률보상회로를 구성하는 Interleaved 승압형 컨버터의 해석 및 설계 (Analysis and Design of Interleaved Boost Power Factor Corrector on Two Stage AC/DC PFC Converter)

  • 허태원;손영대;김동완;김춘삼;박한석;우정인
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권7호
    • /
    • pp.343-351
    • /
    • 2003
  • In this paper, interleaved boost converter is applied as a first-stage converter in switch mode power supply. The first-stage converter plays a role to improve power factor. Interleaved Boost Power Factor Corrector(IBPFC) can reduce input current ripple as a single voltage control loop only without inner current loop, because input current is divided each 50% by two switching devices. Each converter cell is also operated in discontinuous current mode and inductor current of each converter is discontinuous. Total input current which is composed by each converter cell is continuous current. Thus, IBPFC is able to improve input current ripple. IBPFC operating in discontinuous current mode can be classified as six modes from switching state and be carried out state space averaging small signal modeling. A control transfer function is obtained according to the modeling. Not only steady-state characteristics but also dynamic characteristics is considered. Single voltage control loop is also constructed by the control transfer function. From experimental result, improvement of power factor and input current ripple are verified.

A Fully Soft Switched Two Quadrant Bidirectional Soft Switching Converter for Ultra Capacitor Interface Circuits

  • Mirzaei, Amin;Farzanehfard, Hosein;Adib, Ehsan;Jusoh, Awang;Salam, Zainal
    • Journal of Power Electronics
    • /
    • 제11권1호
    • /
    • pp.1-9
    • /
    • 2011
  • This paper describes a two quadrant bidirectional soft switching converter for ultra capacitor interface circuits. The total efficiency of the energy storage system in terms of size and cost can be increased by a combination of batteries and ultra capacitors. The required system energy is provided by a battery, while an ultra capacitor is used at high load power pulses. The ultra capacitor voltage changes during charge and discharge modes, therefore an interface circuit is required between the ultra capacitor and the battery. This interface circuit must have good efficiency while providing bidirectional power conversion to capture energy from regenerative braking, downhill driving and the protecting ultra capacitor from immediate discharge. In this paper a fully soft switched two quadrant bidirectional soft switching converter for ultra capacitor interface circuits is introduced and the elements of the converter are reduced considerably. In this paper, zero voltage transient (ZVT) and zero current transient (ZCT) techniques are applied to increase efficiency. The proposed converter acts as a ZCT Buck to charge the ultra capacitor. On the other hand, it acts as a ZVT Boost to discharge the ultra capacitor. A laboratory prototype converter is designed and realized for hybrid vehicle applications. The experimental results presented confirm the theoretical and simulation results.

Distortion Elimination for Buck PFC Converter with Power Factor Improvement

  • Xu, Jiangtao;Zhu, Meng;Yao, Suying
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.10-17
    • /
    • 2015
  • A quasi-constant on-time controlled buck front end in combined discontinuous conduction mode and boundary conduction mode is proposed to improve power factor (PF).When instantaneous AC input voltage is lower than the output bus voltage per period, the buck converter turns into buck-boost converter with the addition of a level comparator to compare input voltage and output voltage. The gate drive voltage is provided by an additional oscillator during distortion time to eliminate the cross-over distortion of the input current. This high PF comes from the avoidance of the input current distortion, thereby enabling energy to be delivered constantly. This paper presents a series analysis of controlling techniques and efficiency, PF, and total harmonic distortion. A comparison in terms of efficiency and PF between the proposed converter and a previous work is performed. The specifications of the converter include the following: input AC voltage is from 90V to 264V, output DC voltage is 80V, and output power is 94W.This converter can achieve PF of 98.74% and efficiency of 97.21% in 220V AC input voltage process.

Family of Dual-Input Dual-Buck Inverters Based on Dual-Input Switching Cells

  • Yang, Fan;Ge, Hongjuan;Yang, Jingfan;Dang, Runyun;Wu, Hongfei
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1015-1026
    • /
    • 2018
  • A family of dual-DC-input (DI) dual-buck inverters (DBIs) is proposed by employing a DI switching cell as the input of traditional DBIs. Three power ports, i.e. a low voltage DC input port, a high voltage DC input port and an AC output port, are provided by the proposed DI-DBIs. A low voltage DC source, whose voltage is lower than the peak amplitude of the AC side voltage, can be directly connected to the DI-DBI. This supplies power to the AC side in single-stage power conversion. When compared with traditional DBI-based two-stage DC/AC power systems, the conversion stages are reduced, and the power rating and power losses of the front-end Boost converter of the DI-DBI are reduced. In addition, five voltage-levels are generated with the help of the two DC input ports, which is a benefit in terms of reducing the voltage stresses and switching losses of switches. The topology derivation method, operation principles, modulation strategy and characteristics of the proposed inverter are analyzed in-depth. Experimental results are provided to verify the effectiveness and feasibility of the proposed DI-DBIs.

단일전력단으로 구성된 고주파 공진 인버터에 관한 연구 (A Study on Single-Stage High Frequency Resonant Inverter)

  • 원재선;강진욱;김동희;정성균;이영식;이봉섭
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 전력전자학술대회 논문집
    • /
    • pp.750-753
    • /
    • 2002
  • A novel single-stage half-bridge high frequency resonant inverter using ZVS(Zero Voltage Switching) with high input power factor suitable for induction heating applications is presented in this paper. The proposed high frequency resonant Inverter integrates half-bridge boost rectifier as power factor corrector(PFC) and half-bridge resonant inverter into a single stage. The input stage of the half-bridge boost rectifier is working in discontinuous conduction mode (DCM) with constant duty cycle and variable switching frequency. Simulation results through the Pspice have demonstrated the feasibility of the proposed inverter. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

펄스 폭 변조 제어가 적용된 3레벨 LLC컨버터를 이용한 철도차량용 보조전원장치 (Auxiliary Power Unit for Railway Vehicles Using 3 Level LLC Converter with Pulse Width Modulation Control)

  • 백승우;김학원;조관열
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.260-262
    • /
    • 2019
  • 본 논문은 철도 차량용 보조전원 장치의 부피 저감을 위하여 펄스 폭 제어가 포함된 공진형 LLC 컨버터를 제안한다. 철도 차량용 보조전원 장치는 가선에 연결되어 객차의 각종 전원을 공급하는 장치로써 객실 내의 전원과 절연이 필수적이다. 따라서 고효율의 절연형 DC/DC 컨버터인 LLC 컨버터가 적용되어 있으나, 가선의 큰 입력전압 변동에 대응하기 위해 스위칭 주파수의 변조 폭이 넓어질 뿐 아니라 제어 난도가 증가하는 단점을 가진다. 이러한 LLC 컨버터의 단점을 보완하기 위해 Boost+LLC 또는 Buck+LLC 컨버터의 두 단계의 전력변환을 통해 Boost 또는 Buck 컨버터가 LLC 컨버터의 입력전압을 제어하며, LLC 컨버터는 항상 공진 주파수에서 동작하도록 제어하는 시스템이 주로 사용된다. 본 논문은 3레벨 LLC 컨버터에 펄스 폭 변조를 적용하여 입력전압 제어를 달성하며, 이를 통해 기존의 시스템보다 부피 저감을 달성하는 방안을 제안한다. 제안된 방법은 전력변환 모의해석 프로그램인 PSIM 및 Matlab을 통해 검증되었다.

  • PDF

태양광용 부스트 컨버터의 2중 루프 제어 및 단일 루프 제어의 특성 비교 (Comparative Study between Two and Single-loop Control of Boost Converter for PVPCS)

  • 김동환;임지훈;송승호;최주엽;안진웅;이상철;이동하
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.153-159
    • /
    • 2012
  • In photovoltaic system, the characteristic of photovoltaic module such as open circuit voltage and short circuit current will be changed because of cell temperature and solar radiation. Therefore, a boost converter of the PV system connects between the output of photovoltaic system and DC link capacitor of grid connected inverter as controlling duty ratio for maximum power point tracking(MPPT). This paper shows the dynamic characteristic of the boost converter by comparing single-loop control algorithm and two-loop control algorithm using both analog and digital control. The proposed both compensation method has been verified with computer simulation and simulation results obtained demonstrate the validity of the proposed control schemes.

  • PDF

부하전류와 듀티를 보상하는 단상 PFC 부스트 컨버터 제어기 설계 (A Study of Design Single Phase Boost Converter Controller for Compensated Load Current and Duty)

  • 임재욱;이승태;백승우;김학원;조관열;최재호
    • 전력전자학회논문지
    • /
    • 제22권6호
    • /
    • pp.527-534
    • /
    • 2017
  • This paper proposes a new DC link voltage controller for a single-phase power factor correction (PFC) boost converter. The load current of the PFC boost converter affects the capacitor current, whereas the load current changes the output voltage. However, previous works that compensate output current have failed to consider the relationship between load current and duty. Thus, they also fail to maintain a constant output voltage if the load fluctuates under the conditions of a non-rated input voltage. By considering the duty in the load current compensation, the proposed method improves the load transient response regardless of the input voltage. To demonstrate its effectiveness, the proposed method is compared with other control methods by conducting PSM simulations and experiments under a rapidly changing load.

연료전지로 구동되는 TIG-용접기용 DC-DC 컨버터 개발 (Development of TIG-Welder DC-DC Converter Based on Fuel Cell Stack)

  • 민명식;박상훈;전범수;원충연
    • 조명전기설비학회논문지
    • /
    • 제23권8호
    • /
    • pp.48-56
    • /
    • 2009
  • 본 논문은 연료전지스택을 입력전원으로 하는 TIG-용접기용 전력변환장치를 제안하였다. 일반적으로 TIG-용접기의 전원공급장치는 상용전원을 이용한 다이오드 브리지 정류회로를 사용한다. 이런 회로의 경우 다이오드 정류기와 용량이 큰 캐패시터를 사용하게 되므로 부피가 커지고, 입력전류는 맥동성분과 고조파를 포함하게 된다. 또한, TIG-용접기는 상용전원의 사용이 여의치 않은 도서산간지역이나 특수한 환경에서는 소형 경량의 이동성이 수월한 전원장치 및 전력원을 필요로 하게 된다. 따라서 본 논문의 TIG-용접기용 전력변환장치는 고체고분자형연료전지(PEMFC)를 입력전원으로 사용하고, 부스트 컨버터의 기능과 인버터 용접전원의 기능을 하나의 풀-브리지 컨버터로 구성하였다. 제안한 연료전지를 이용한 TIG-용접기용 전력변환장치는 컴퓨터 시뮬레이션과 실험을 통하여 성능을 검증하였다.