• Title/Summary/Keyword: Bone thickness

Search Result 565, Processing Time 0.028 seconds

Consideration of Lateral Cortical Bone Thickness and IAN Canal Location During Mandibular Ramus Bone Grafting for Implant Placement

  • Lee, Nam-Hoon;Ohe, Joo-Young;Lee, Baek-Soo;Kwon, Yong-Dae;Choi, Byung-Joon;Bang, Sung-Moon
    • Journal of Korean Dental Science
    • /
    • v.3 no.2
    • /
    • pp.4-11
    • /
    • 2010
  • Purpose: This study aimed at examining the thickness of lateral cortical bone in the mandibular posterior body and the location of the inferior alveolar nerve canal as well as investigating the clinically viable bone grafting site(s) and proper thickness of the bone grafts. Subjects and Methods: The study enrolled a total of 49 patients who visited the Department of Oral and Maxillofacial Surgery at Kyung Hee University Dental Hospital to have their lower third molar extracted and received cone beam computed tomography (CBCT) examinations. Their CBCT data were used for the study. The thickness of lateral cortical bone and the location of inferior alveolar nerve canal were each measured from the buccal midpoint of the patients' lower first molar to the mandibular ramus area in the occlusal plane of the molar area. Results: Except in the external oblique ridge and alveolar ridge, all measured areas exhibited the greatest cortical bone thickness near the lower second molar area and the smallest cortical bone thickness in the retromolar area. The inferior alveolar nerve canal was found to be located in the innermost site near the lower second molar area compared to other areas. In addition, the greatest thickness of the trabecular bone was found between the inferior alveolar nerve canal and the lateral cortical bone. Conclusions: In actual clinical settings involving bone harvesting in the posterior mandibular body, clinicians are advised to avoid locating the osteotomy line in the retromolar area to help protect the inferior alveolar nerve canal from damage. Harvesting the bone near the lower second molar area is judged to be the proper way of securing cortical bone with the greatest thickness.

  • PDF

Evaluation of mandibular cortical bone thickness for placement of temporary anchorage devices (TADs)

  • Kim, Jung-Hoon;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.42 no.3
    • /
    • pp.110-117
    • /
    • 2012
  • Objective: In this study, we measured the cortical bone thickness in the mandibular buccal and lingual areas using computed tomography in order to evaluate the suitability of these areas for application of temporary anchorage devices (TADs) and to suggest a clinical guide for TADs. Methods: The buccal and lingual cortical bone thickness was measured in 15 men and 15 women. Bone thickness was measured 4 mm apical to the interdental cementoenamel junction between the mandibular canine and the 2nd molar using the transaxial slices in computed tomography images. Results: The cortical bone in the mandibular buccal and lingual areas was thicker in men than in women. In men, the mandibular lingual cortical bone was thicker than the buccal cortical bone, except between the 1st and 2nd molars on both sides. In women, the mandibular lingual cortical bone was thicker in all regions when compared to the buccal cortical bone. The mandibular buccal cortical bone thickness increased from the canine to the molars. The mandibular lingual cortical bone was thickest between the 1st and 2nd premolars, followed by the areas between the canine and 1st premolar, between the 2nd premolar and 1st molar, and between the 1st molar and 2nd molar. Conclusions: There is sufficient cortical bone for TAD applications in the mandibular buccal and lingual areas. This provides the basis and guidelines for the clinical use of TADs in the mandibular buccal and lingual areas.

REGIONAL THICKNESS OF PARIETAL BONE IN KOREAN ADULTS (한국인 성인에서 두정골의 부위별 두께에 대한 연구)

  • Cha, In-Ho;Kim, Hee-Jin;Jeong, Young-Soo;Yi, Choong-Kook;Chung, In-Hyuk
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.20 no.3
    • /
    • pp.269-273
    • /
    • 1998
  • To clarify the clinical utility of the calvarial bone graft in the maxillofacial reconstruction, we performed on anatomical study by measuring the regional thickness of the parietal bone on 17 Korean adult dry skulls. Before the sectioning the calvarium, the anatomical landmarks were marked on each specimens. And then we measured the total thickness of the parietal bone, the thickness of the outer and inner cortical plates on various points in each sections of parietal bones using a digital caliper under the stereomicroscope. The total thickness of the parietal bone was ranged from 5.17mm to 7.50mm, and there were no statistical difference in the total thickness of the parietal bone on the same points bilaterally. But there was a tendency that the thickness of the parietal bone was thicker toward to the lambda point than the coronal suture area. At the other hand, the thickness of the outer and inner plate of the parietal bone was the thickest at the first point of the right aspect on the line 1, the first point of the left aspect on the line 5, respectively. In conclusion, this study showed that the donor site of the parietal bone for the maxillofacial reconstruction should be located at more posterior and medial area of the parietal bone than the prevalent known donor site.

  • PDF

Review on the Correlation between Bone Mass, Skinfold Thickness and the Volume of Urine collagen Peptide in Postmenopausal Women (폐경 후 여성의 골량과 피부두겹두께 및 뇨 콜라겐펩타이드 양의 관련성에 대한 고찰)

  • Park, Mi-Jung
    • Journal of Korean Biological Nursing Science
    • /
    • v.3 no.2
    • /
    • pp.91-103
    • /
    • 2001
  • The bone is composed of the bone matrix of collagen and hydroxyapatite, the mixture of calcium and phosphours. The bone tissue is considered to the special connective tissue that possesses extracellular matrix made by collagen fiber deposited with mineral complex. In order to maintain bone mass measured by the sum of bone matrix and hydroxyapatite, bone resorption by osteoclast during lifetime and bone remodeling to form bone by osteoblast in its resorption region repeat continuously. The osteoblast has a mesodermic fetal origin like fibroblast for the formation of form tissues. Two cells express identical genes and synthesize the identical collagen type I as the major component of the formation of bone matrix and skin. Therefore, it is considered that the decrease of skinfold thickness and the decrease of bone mass related to the age, the change of two tissues composed of collagen type I is caused by the same genetic mechanism. The decrease of bone mass is caused by the change of the amount and structure of bone matrix by several factors and the amount of minerals deposited on bone matrix. Especially, in case of female, the deficiency of estrogen by menopause makes these changes rapidly increased. The decrease of bone mass and skinfold thickness is due to the decrease of the amount of collagen and its structural change the common component of bone tissue and skin tissue. Therefore, the relationship of the amount of cross-linked peptide N-telopeptide, collagen metabolite which excretes as urine. Based upon the proved results about the significant relationship of bone mass, the amount of bone collagen, the amount of skin collagen and skinfold thickness, the bone mass may be expected through a facile determination of skinfold thickness.

  • PDF

Description of mandibular bone quality based on measurements of cortical thickness using Mental Index of male and female patients between 40-60 years old

  • Hardanti, Sylviana;Azhari, Azhari;Oscandar, Fahmi
    • Imaging Science in Dentistry
    • /
    • v.41 no.4
    • /
    • pp.151-153
    • /
    • 2011
  • Purpose : The purpose of this study was to obtain the description of the mandibular bone quality of male and female patients between 40-60 years old and their differences based on mandibular cortical bone thickness measured using Mental Index (MI). Materials and Methods : Forty digital panoramic radiographs, which consisted of twenty male and twenty female patients, 40-60 years old, were observed. Mandibular cortical bone thickness was measured using MI on both sides of the mandible. The average MI score of two groups were then assessed using t-sample independent test. Results : There were significant differences of mandibular bone quality based on mandibular cortical bone thickness measurement using MI between male and female patients (p<0.05). Conclusion : Mandibular bone quality based on cortical bone thickness measurement using MI of male and female patients indicated a significant difference.

AN EVALUATION OF THE PRIMARY IMPLANT STABILITY AND THE IMMEDIATE LOAD-BEARING CAPACITY ACCORDING TO THE CHANGE OF CORTICAL BONE THICKNESS (치밀골 두께 변화에 따른 임플랜트 1차안정성과 즉시하중부담능 평가)

  • Yi Yang-Jin;Park Chan-Jin;Cho Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.2
    • /
    • pp.248-257
    • /
    • 2005
  • Statement of problem. Cortical bone plays an important role in the primary implant stability, which is essential to immediate/early loading. However, immediate load-bearing capacity and primary implant stability according to the change of the cortical bone thickness have not been reported. Purpose. The objectives of this study were (1) to measure the immediate load-bearing capacity of implant and primary implant stability according to the change of cortical bone thickness, and (2) to evaluate the correlation between them. Material and methods.48, screw-shaped implants (3.75 mm$\times$7 mm) were placed into bovine rib bone blocks with different upper cortical bone thickness (0-2.5 mm) and resonance frequency (RF) values were measured subsequently. After fastening of healing abutment. implants were subjected to a compressive load until tolerated micromotion threshold known for the osseointegration and load values at threshold were recorded. Thereafter, RF measurement after loading, CT taking and image analysis were performed serially to evaluate the cortical bone quality and quantity. Immediate load-bearing capacity and RF values were analyzed statistically with ANOVA and post-hoc method at 95% confidence level (P<0.05). Regression analysis and correlation test were also performed. Results. Existence and increase of cortical bone thickness increased the immediate load-bearing capacity and RF value (P<0.05) With the result of regression analysis, all parameter's of cortical bone thickness to immediate load-bearing capacity and resonance frequency showed significant positive values (P<0.0001). A significant high correlation was observed between the cortical bone thickness and immediate load-beating capacity (r=0.706, P<0.0001), between the cortical bone thickness and resonance frequency (r=0.753, P<0.0001) and between the immediate load-bearing capacity and resonance frequency (r=0.755, P<0.0001). Conclusion. In summary, cortical bone thickness change affected the immediate load-baring capacity and the RF value. Although RF analysis (RFA) is based on the measurement of implant/bone interfacial stiffness, when the implant is inserted stably, RFA is also considered to reflect implant/bone interfacial strength of immediately after placement from high correlation with the immediate load-baring capacity. RFA and measuring the cortical bone thickness with X-ray before and during surgery could be an effective diagnosis tool for the success of immediate loading of implant.

The effects of bone density and crestal cortical bone thickness on micromotion and peri-implant bone strain distribution in an immediately loaded implant: a nonlinear finite element analysis

  • Sugiura, Tsutomu;Yamamoto, Kazuhiko;Horita, Satoshi;Murakami, Kazuhiro;Tsutsumi, Sadami;Kirita, Tadaaki
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.3
    • /
    • pp.152-165
    • /
    • 2016
  • Purpose: This study investigated the effects of bone density and crestal cortical bone thickness at the implant-placement site on micromotion (relative displacement between the implant and bone) and the peri-implant bone strain distribution under immediate-loading conditions. Methods: A three-dimensional finite element model of the posterior mandible with an implant was constructed. Various bone parameters were simulated, including low or high cancellous bone density, low or high crestal cortical bone density, and crestal cortical bone thicknesses ranging from 0.5 to 2.5 mm. Delayed- and immediate-loading conditions were simulated. A buccolingual oblique load of 200 N was applied to the top of the abutment. Results: The maximum extent of micromotion was approximately $100{\mu}m$ in the low-density cancellous bone models, whereas it was under $30{\mu}m$ in the high-density cancellous bone models. Crestal cortical bone thickness significantly affected the maximum micromotion in the low-density cancellous bone models. The minimum principal strain in the peri-implant cortical bone was affected by the density of the crestal cortical bone and cancellous bone to the same degree for both delayed and immediate loading. In the low-density cancellous bone models under immediate loading, the minimum principal strain in the peri-implant cortical bone decreased with an increase in crestal cortical bone thickness. Conclusions: Cancellous bone density may be a critical factor for avoiding excessive micromotion in immediately loaded implants. Crestal cortical bone thickness significantly affected the maximum extent of micromotion and peri-implant bone strain in simulations of low-density cancellous bone under immediate loading.

New method of assessing the relationship between buccal bone thickness and gingival thickness

  • Kim, Yun-Jeong;Park, Ji-Man;Kim, Sungtae;Koo, Ki-Tae;Seol, Yang-Jo;Lee, Yong-Moo;Rhyu, In-Chul;Ku, Young
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.6
    • /
    • pp.372-381
    • /
    • 2016
  • Purpose: The aim of this study was to determine the relationship between buccal bone thickness and gingival thickness by means of a noninvasive and relatively accurate digital registration method. Methods: In 20 periodontally healthy subjects, cone-beam computed tomographic images and intraoral scanned files were obtained. Measurements of buccal bone thickness and gingival thickness at the central incisors, lateral incisors, and canines were performed at points 0-5 mm from the alveolar crest on the superimposed images. The Friedman test was used to compare buccal bone and gingival thickness for each depth between the 3 tooth types. Spearman's correlation coefficient was calculated to assess the correlation between buccal bone thickness and gingival thickness. Results: Of the central incisors, 77% of all sites had a buccal thickness of 0.5-1.0 mm, and 23% had a thickness of 1.0-1.5 mm. Of the lateral incisors, 71% of sites demonstrated a buccal bone thickness <1.0 mm, as did 63% of the canine sites. For gingival thickness, the proportion of sites <1.0 mm was 88%, 82%, and 91% for the central incisors, lateral incisors, and canines, respectively. Significant differences were observed in gingival thickness at the alveolar crest level (G0) between the central incisors and canines (P=0.032) and between the central incisors and lateral incisors (P=0.013). At 1 mm inferior to the alveolar crest, a difference was found between the central incisors and canines (P=0.025). The lateral incisors and canines showed a significant difference for buccal bone thickness 5 mm under the alveolar crest (P=0.025). Conclusions: The gingiva and buccal bone of the anterior maxillary teeth were found to be relatively thin (<1 mm) overall. A tendency was found for gingival thickness to increase and bone thickness to decrease toward the root apex. Differences were found between teeth at some positions, although the correlation between buccal bone thickness and soft tissue thickness was generally not significant.

Influence of soft tissue and bone thickness on the dimensional change of peri-implant soft tissues;A clinical follow-up study (연조직 및 골 두께가 임플란트 주위 연조직 형태에 끼치는 영향에 관한 임상추적연구)

  • Chang, Moon-Taek
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.1
    • /
    • pp.187-197
    • /
    • 2005
  • The aim of this study was to investigate the influence of peri-implant soft tissue and bone thickness on the early dimensional change of peri-implant soft tissue. Seventy-seven non-submerged implants of 39 patients which had been loaded more than 6 months were selected for the study. Following clinical parameters were measured; bucco-lingual bone width of the alveolar bone for implant placement before implant surgery; distance between implant shoulder and the first bone/implant contact at the surgery; presence of plaque, probing depth, bleeding on probing, width of keratinized mucosa, mucosa thickness, distance between implant shoulder and peri-implant mucosa, crown margin location at follow-up examination. The results showed that distance between implant shoulder and peri-implant mucosa (DIM) was correlated with probing depth and width of keratinized mucosa (p < 0.05). In addition, mucosa thickness was also correlated with probing depth (p<0.05). However, the bone width of alveolar bone and soft tissue thickness were not found to be correlated with DIM. It is important to understand the meaning of peri-implant tissue dimension in relation to dimensional changes of peri-implant soft tissue which designates appearance of implant-supported restorations. Future study is needed to elucidate the significance of the buccal bone thickness and soft tissue thickness with respect to the change of peri-implant soft tissue margin with the use of an instrument capable of measuring buccal bone thickness directly.

Effect of initial placement level and wall thickness on maintenance of the marginal bone level in implants with a conical implant-abutment interface: a 5-year retrospective study

  • Yoo, Jaehyun;Moon, Ik-Sang;Yun, Jeong-Ho;Chung, Chooryung;Huh, Jong-Ki;Lee, Dong-Won
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.3
    • /
    • pp.185-192
    • /
    • 2019
  • Purpose: Implant wall thickness and the height of the implant-abutment interface are known as factors that affect the distribution of stress on the marginal bone around the implant. The goal of this study was to evaluate the long-term effects of supracrestal implant placement and implant wall thickness on maintenance of the marginal bone level. Methods: In this retrospective study, 101 patients with a single implant were divided into the following 4 groups according to the thickness of the implant wall and the initial implant placement level immediately after surgery: 0.75 mm wall thickness, epicrestal position; 0.95 mm wall thickness, epicrestal position; 0.75 mm wall thickness, supracrestal position; 0.95 mm wall thickness, supracrestal position. The marginal bone level change was assessed 1 day after implant placement, immediately after functional loading, and 1 to 5 years after prosthesis delivery. To compare the marginal bone level change, repeated-measures analysis of variance was used to evaluate the statistical significance of differences within groups and between groups over time. Pearson correlation coefficients were also calculated to analyze the correlation between implant placement level and bone loss. Results: Statistically significant differences in bone loss among the 4 groups (P<0.01) and within each group over time (P<0.01) were observed. There was no significant difference between the groups with a wall thickness of 0.75 mm and 0.95 mm. In a multiple comparison, the groups with a supracrestal placement level showed greater bone loss than the epicrestal placement groups. In addition, a significant correlation between implant placement level and marginal bone loss was observed. Conclusions: The degree of bone resorption was significantly higher for implants with a supracrestal placement compared to those with an epicrestal placement.