• Title/Summary/Keyword: Bone segmentation

Search Result 58, Processing Time 0.023 seconds

A Bone Age Assessment Method Based on Normalized Shape Model (정규화된 형상 모델을 이용한 뼈 나이 측정 방법)

  • Yoo, Ju-Woan;Lee, Jong-Min;Kim, Whoi-Yul
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.3
    • /
    • pp.383-396
    • /
    • 2009
  • Bone age assessment has been widely used in pediatrics to identify endocrine problems of children. Since the number of trained doctors is far less than the demands, there has been numerous requests for automatic estimation of bone age. Therefore, in this paper, we propose an automatic bone age assessment method that utilizes pattern classification techniques. The proposed method consists of three modules; a finger segmentation module, a normalized shape model generation module and a bone age estimation module. The finger segmentation module segments fingers and epiphyseal regions by means of various image processing algorithms. The shape model abstraction module employ ASM to improves the accuracy of feature extraction for bone age estimation. In addition, SVM is used for estimation of bone age. Features for the estimation include the length of bone and the ratios of bone length. We evaluated the performance of the proposed method through statistical analysis by comparing the bone age assessment results by clinical experts and the proposed automatic method. Through the experimental results, the mean error of the assessment was 0.679 year, which was better than the average error acceptable in clinical practice.

  • PDF

Automatic Segmentation of Skin and Bone in CT Images using Iterative Thresholding and Morphological Image Processing

  • Kang, Ho Chul;Shin, Yeong-Gil;Lee, Jeongjin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.191-194
    • /
    • 2014
  • This paper proposes a fast and efficient method to extract the skin and bone automatically in CT images. First, the images were smoothed by applying an anisotropic diffusion filter to remove noise. The whole body was then detected by thresholding, which was set automatically. In addition, the contour of the skin was segmented using morphological operators and connected component labeling (CCL). Finally, the bone was extracted by iterative thresholding.

Robust Segmentation for Low Quality Cell Images from Blood and Bone Marrow

  • Pan Chen;Fang Yi;Yan Xiang-Guo;Zheng Chong-Xun
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.637-644
    • /
    • 2006
  • Biomedical image is often complex. An applied image analysis system should deal with the images which are of quite low quality and are challenging to segment. This paper presents a framework for color cell image segmentation by learning and classification online. It is a robust two-stage scheme using kernel method and watershed transform. In first stage, a two-class SVM is employed to discriminate the pixels of object from background; where the SVM is trained on the data which has been analyzed using the mean shift procedure. A real-time training strategy is also developed for SVM. In second stage, as the post-processing, local watershed transform is used to separate clustering cells. Comparison with the SSF (Scale space filter) and classical watershed-based algorithm (those are often employed for cell image segmentation) is given. Experimental results demonstrate that the new method is more accurate and robust than compared methods.

Automated Detection and Segmentation of Bone Metastases on Spine MRI Using U-Net: A Multicenter Study

  • Dong Hyun Kim;Jiwoon Seo;Ji Hyun Lee;Eun-Tae Jeon;DongYoung Jeong;Hee Dong Chae;Eugene Lee;Ji Hee Kang;Yoon-Hee Choi;Hyo Jin Kim;Jee Won Chai
    • Korean Journal of Radiology
    • /
    • v.25 no.4
    • /
    • pp.363-373
    • /
    • 2024
  • Objective: To develop and evaluate a deep learning model for automated segmentation and detection of bone metastasis on spinal MRI. Materials and Methods: We included whole spine MRI scans of adult patients with bone metastasis: 662 MRI series from 302 patients (63.5 ± 11.5 years; male:female, 151:151) from three study centers obtained between January 2015 and August 2021 for training and internal testing (random split into 536 and 126 series, respectively) and 49 MRI series from 20 patients (65.9 ± 11.5 years; male:female, 11:9) from another center obtained between January 2018 and August 2020 for external testing. Three sagittal MRI sequences, including non-contrast T1-weighted image (T1), contrast-enhanced T1-weighted Dixon fat-only image (FO), and contrast-enhanced fat-suppressed T1-weighted image (CE), were used. Seven models trained using the 2D and 3D U-Nets were developed with different combinations (T1, FO, CE, T1 + FO, T1 + CE, FO + CE, and T1 + FO + CE). The segmentation performance was evaluated using Dice coefficient, pixel-wise recall, and pixel-wise precision. The detection performance was analyzed using per-lesion sensitivity and a free-response receiver operating characteristic curve. The performance of the model was compared with that of five radiologists using the external test set. Results: The 2D U-Net T1 + CE model exhibited superior segmentation performance in the external test compared to the other models, with a Dice coefficient of 0.699 and pixel-wise recall of 0.653. The T1 + CE model achieved per-lesion sensitivities of 0.828 (497/600) and 0.857 (150/175) for metastases in the internal and external tests, respectively. The radiologists demonstrated a mean per-lesion sensitivity of 0.746 and a mean per-lesion positive predictive value of 0.701 in the external test. Conclusion: The deep learning models proposed for automated segmentation and detection of bone metastases on spinal MRI demonstrated high diagnostic performance.

Developments of Semi-Automatic Vertebra Bone Segmentation Tool using Valley Tracking Deformable Model (계곡 추적 Deformable Model을 이용한 반자동 척추뼈 분할 도구의 개발)

  • Kim, Yie-Bin;Kim, Dong-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.791-797
    • /
    • 2007
  • This paper proposes a semiautomatic vertebra segmentation method that overcomes limitations of both manual segmentation requiring tedious user interactions and fully automatic segmentation that is sensitive to initial conditions. The proposed method extracts fence surfaces between vertebrae, and segments a vertebra using fence-limited region growing. A fence surface is generated by a deformable model utilizing valley information in a valley emphasized Gaussian image. Fence-limited region growing segments a vertebra using gray value homogeneity and fence surfaces acting as barriers. The proposed method has been applied to ten patient data sets, and produced promising results accurately and efficiently with minimal user interaction.

Fully automatic Segmentation of Knee Cartilage on 3D MR images based on Knowledge of Shape and Intensity per Patch (3차원 자기공명영상에서 패치 단위 형상 및 밝기 정보에 기반한 연골 자동 영역화 기법)

  • Park, Sang-Hyun;Lee, Soo-Chan;Shim, Hack-Joon;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.75-81
    • /
    • 2010
  • The segmentation of cartilage is crucial for the diagnose and treatment of osteoarthritis (OA), and has mostly been done manually by an expert, requiring a considerable amount of time and effort due to the thin shape and vague boundaries of the cartilage in MR (magnetic resonance) images. In this paper, we propose a fully automatic method to segment cartilage in a knee joint on MR images. The proposed method is based on a small number of manually segmented images as the training set and comprised of an initial per patch segmentation process and a global refinement process on the cumulative per patch results. Each patch for per patch segmentation is positioned by classifying the bone-cartilage interface on the pre-segmented bone surface. Next, the shape and intensity priors are constructed for each patch based on information extracted from reference patches in the training set. The ratio of influence between the shape and intensity priors is adaptively determined per patch. Each patch is segmented by graph cuts, where energy is defined based on constructed priors. Finally, global refinement is conducted on the global cartilage using the results of per patch segmentation as the shape prior. Experimental evaluation shows that the proposed framework provide accurate and clinically useful segmentation results.

Bone Segmentation Method of Visible Human using Multimodal Registration (다중 모달 정합에 의한 Visible Human의 뼈 분할 방법)

  • Lee, Ho;Kim, Dong-Sung;Kang, Heung-Sik
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.719-726
    • /
    • 2003
  • This paper proposes a multimodal registration method for segmentation of the Visible Human color images, in which color characteristics of bones are very similar to those of its surrounding fat areas. Bones are initially segmented in CT images, and then registered into color images to lineate their boundaries in the color images. For the segmentation of bones in CT images, a thresholding method is developed. The registration method registers boundaries of bodies in CT and color images using a cross-correlation approach, in which the boundaries of bodies are extracted by thresholding segmentation methods. The proposed method has been applied to segmentation of bones in a head and legs whose boundary is ambiguous due to surrounding fat areas with similar color characteristics, and produced promising results.

The Versatility of Cervical Vertebral Segmentation in Detection of Positional Changes in Patient with Long Standing Congenital Torticollis

  • Hussein, Mohammed Ahmed;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.28-32
    • /
    • 2016
  • Background Congenital muscular torticollis (CMT) is a benign condition. With early diagnosis and appropriate management, it can be cured completely, leaving no residual deformity. However, long-standing, untreated CMT can lead to permanent craniofacial deformities and asymmetry.Methods Nineteen patients presented to the author with congenital muscular torticollis. Three dimensional computed tomography (3-D CT) scans was obtained upon patient’s admission. Adjustment of skull’s position to Frankfort horizontal plan was done. Cervical vertebral segmentation was done which allowed a 3D module to be separately created for each vertebra to detect any anatomical or positional changes.Results The segmented vertebrae showed an apparent anatomical changes, which were most noticeable at the level of the atlas and axis vertebrae. These changes decreased gradually till reaching the seventh cervical vertebra, which appeared to be normal in all patients. The changes in the atlas vertebra were mostly due to its intimate relation with the skull base, while the changes of the axis were the most significantConclusion Cervical vertebral segmentation is a reliable tool for isolation and studying cervical vertebral pathological changes of each vertebra separately. The accuracy of the procedures in addition to the availability of many software that can be used for segmentation will allow many surgeons to use segmentation of the vertebrae for diagnosis and even for preoperative simulation planning.

Automatic Segmentation of Trabecular Bone Based on Sphere Fitting for Micro-CT Bone Analysis (마이크로-CT 뼈 영상 분석을 위한 구 정합 기반 해면뼈의 자동 분할)

  • Kang, Sun Kyung;Kim, Young Un;Jung, Sung Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.329-334
    • /
    • 2014
  • In this study, a new method that automatically segments trabecular bone for its morphological analysis using micro-computed tomography imaging was proposed. In the proposed method, the bone region was extracted using a threshold value, and the outer boundary of the bone was detected. The sphere of maximum size with the corresponding voxel as the center was obtained by applying the sphere-fitting method to each voxel of the bone region. If this sphere includes the outer boundary of the bone, the voxels included in the sphere are classified as cortical bone; otherwise, they are classified as trabecular bone. The proposed method was applied to images of the distal femurs of 15 mice, and comparative experiments, with results manually divided by a person, were performed. Four morphological parameters-BV/TV, Tb.Th, Tb.Sp, and Tb.N-for the segmented trabecular bone were measured. The results were compared by regression analysis and the Bland-Altman method; BV/TV, Tb.Th, Tb.Sp, and Tb.N were all in the credible range. In addition, not only can the sphere-fitting method be simply implemented, but trabecular bone can also be divided precisely by using the three-dimensional information.

Hierarchical Organ Segmentation using Location Information based on Multi-atlas in Abdominal CT Images (복부 컴퓨터단층촬영 영상에서 다중 아틀라스 기반 위치적 정보를 사용한 계층적 장기 분할)

  • Kim, Hyeonjin;Kim, Hyeun A;Lee, Han Sang;Hong, Helen
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.12
    • /
    • pp.1960-1969
    • /
    • 2016
  • In this paper, we propose an automatic hierarchical organ segmentation method on abdominal CT images. First, similar atlases are selected using bone-based similarity registration and similarity of liver, kidney, and pancreas area. Second, each abdominal organ is roughly segmented using image-based similarity registration and intensity-based locally weighted voting. Finally, the segmented abdominal organ is refined using mask-based affine registration and intensity-based locally weighted voting. Especially, gallbladder and pancreas are hierarchically refined using location information of neighbor organs such as liver, left kidney and spleen. Our method was tested on a dataset of 12 portal-venous phase CT data. The average DSC of total organs was $90.47{\pm}1.70%$. Our method can be used for patient-specific abdominal organ segmentation for rehearsal of laparoscopic surgery.