• 제목/요약/키워드: Bone scaffold

검색결과 168건 처리시간 0.03초

하이드록시아파타이트/락타이드 글리콜라이드 공중합체 지지체 조성에 따른 염증 완화 효과 (Inflammatory Responses to Hydroxyapatite/Poly(lactic-co-glycolic acid) Scaffolds with Variation of Compositions)

  • 장지은;김혜민;김형석;전대연;박찬흠;권순용;정진화;강길선
    • 폴리머
    • /
    • 제38권2호
    • /
    • pp.156-163
    • /
    • 2014
  • 하이드록시아파타이트는 골 전도가 우수하고 생체 적합성이 우수하며 염증 반응을 일으키지 않아 임상에서 골이식재로 널리 사용되고 있다. 본 연구에서는 하이드록시아파타이트를 함유한 poly(lactic-co-glycolic acid) (PLGA) 지지체를 제조하였으며 생체 내/외의 실험을 통하여 골 이식재로서의 응용가능성을 평가하였다. 하이드록시아파타이트/PLGA 지지체는 0, 10, 20, 40 및 60 wt%의 함량으로 제조하였다. 기계적 특성을 알아보기 위하여 압축강도, SEM, FTIR을 측정하였으며 MTT, RT-PCR, FACS, 조직학적 염색(H&E, ED-1)을 실시하였다. 그 결과 하이드록시아파타이트를 함유한 PLGA 지지체에서 염증 반응이 감소하는 것을 확인할 수 있었으며 골 이식재로서의 가능성을 보여주었다.

Periodontal healing using a collagen matrix with periodontal ligament progenitor cells in a dehiscence defect model in beagle dogs

  • Yoo, Seung-Yoon;Lee, Jung-Seok;Cha, Jae-Kook;Kim, Seul-Ki;Kim, Chang-Sung
    • Journal of Periodontal and Implant Science
    • /
    • 제49권4호
    • /
    • pp.215-227
    • /
    • 2019
  • Purpose: To histologically characterize periodontal healing at 8 weeks in surgically created dehiscence defects in beagle dogs that received a collagen matrix with periodontal ligament (PDL) progenitor cells. Methods: The bilateral maxillary premolars and first molars in 6 animals were used. Standardized experimental dehiscence defects were made on the buccal side of 3 premolars, and primary culturing of PDL progenitor cells was performed on the molars. Collagen matrix was used as a scaffold and a delivery system for PDL progenitor cells. The experimental sites were grafted with collagen matrix (COL), PDL progenitor cells with collagen matrix (COL/CELL), or left without any material (CTL). Histologic and histomorphometric analyses were performed after 8 weeks. Results: The defect height from the cementoenamel junction to the most apical point of cementum removal did not significantly differ across the CTL, COL, and COL/CELL groups, at $4.57{\pm}0.28$, $4.56{\pm}0.41$, and $4.64{\pm}0.27mm$ (mean ${\pm}$ standard deviation), respectively; the corresponding values for epithelial adhesion were $1.41{\pm}0.51$, $0.85{\pm}0.29$, and $0.30{\pm}0.41mm$ (P<0.05), the heights of new bone regeneration were $1.32{\pm}0.44$, $1.65{\pm}0.52$, and $1.93{\pm}0.61mm$ (P<0.05), and the cementum regeneration values were $1.15{\pm}0.42$, $1.81{\pm}0.46$, and $2.57{\pm}0.56mm$ (P<0.05). There was significantly more new bone formation in the COL/CELL group than in the CTL group, and new cementum length was also significantly higher in the COL/CELL group. However, there were no significant differences in the width of new cementum among the groups. Conclusions: PDL progenitor cells carried by a synthetic collagen matrix may enhance periodontal regeneration, including cementum and new bone formation.

Induction of Angiogenesis by Matrigel Coating of VEGF-Loaded PEG/PCL-Based Hydrogel Scaffolds for hBMSC Transplantation

  • Jung, Yeon Joo;Kim, Kyung-Chul;Heo, Jun-Young;Jing, Kaipeng;Lee, Kyung Eun;Hwang, Jun Seok;Lim, Kyu;Jo, Deog-Yeon;Ahn, Jae Pyoung;Kim, Jin-Man;Huh, Kang Moo;Park, Jong-Il
    • Molecules and Cells
    • /
    • 제38권7호
    • /
    • pp.663-668
    • /
    • 2015
  • hBMSCs are multipotent cells that are useful for tissue regeneration to treat degenerative diseases and others for their differentiation ability into chondrocytes, osteoblasts, adipocytes, hepatocytes and neuronal cells. In this study, biodegradable elastic hydrogels consisting of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(${\varepsilon}$-caprolactone) (PCL) scaffolds were evaluated for tissue engineering because of its biocompatibility and the ability to control the release of bioactive peptides. The primary cultured cells from human bone marrow are confirmed as hBMSC by immunohistochemical analysis. Mesenchymal stem cell markers (collagen type I, fibronectin, CD54, $integrin1{\beta}$, and Hu protein) were shown to be positive, while hematopoietic stem cell markers (CD14 and CD45) were shown to be negative. Three different hydrogel scaffolds with different block compositions (PEG:PCL=6:14 and 14:6 by weight) were fabricated using the salt leaching method. The hBMSCs were expanded, seeded on the scaffolds, and cultured up to 8 days under static conditions in Iscove's Modified Dulbecco's Media (IMDM). The growth of MSCs cultured on the hydrogel with PEG/PCL= 6/14 was faster than that of the others. In addition, the morphology of MSCs seemed to be normal and no cytotoxicity was found. The coating of the vascular endothelial growth factor (VEGF) containing scaffold with Matrigel slowed down the release of VEGF in vitro and promoted the angiogenesis when transplanted into BALB/c nude mice. These results suggest that hBMSCs can be supported by a biode gradable hydrogel scaffold for effective cell growth, and enhance the angiogenesis by Matrigel coating.

Application of a paste-type acellular dermal matrix for coverage of chronic ulcerative wounds

  • Jeon, Minseok;Kim, So Young
    • Archives of Plastic Surgery
    • /
    • 제45권6호
    • /
    • pp.564-571
    • /
    • 2018
  • Background Chronic wounds occur due to failure of the normal healing process, associated with a lack of deposition of cellular components and a suitable microenvironment such as the extracellular matrix (ECM). Acellular dermal matrix (ADM) is viewed as an ECM substitute, and a paste-type ADM has recently been introduced. We hypothesized that CGPaste, an injectable paste-type ADM, could serve as a scaffold and promote wound healing. Methods We retrospectively studied seven patients in whom CGPaste was applied between 2017 and 2018, who had pressure ulcers, necrotizing fasciitis, diabetic foot ulcers, traumatic defects, and osteomyelitis. The goal of applying CGPaste was to achieve complete wound healing with re-epithelialization or growth of granulation tissue, depending upon the wound bed status. CGPaste was injected based on the wound size along with the application of a dressing. Results Four of the seven patients showed granulation tissue on their wound bed, while the other three patients had a bony wound bed. The mean wound area was $453.57mm^2$ and the depth was 10.71 mm. Wound healing occurred in five of the seven patients (71.43%). The mean duration of complete healing was 2.4 weeks. Two patients showed failure due to paste absorption (29.57%); these patients had wound beds comprising bone with relatively large and deep wounds ($40{\times}30$ and $30{\times}20mm^2$ in area and 15 and 10 mm in depth). Conclusions CGPaste is an effective option for coverage of small and deep chronic wounds for which a flap operation or skin grafting is unfeasible.

Evaluation of blood clot, platelet-rich plasma, and platelet-rich fibrin-mediated regenerative endodontic procedures in teeth with periapical pathology: a CBCT study

  • Swati Markandey;Haridas Das Adhikari
    • Restorative Dentistry and Endodontics
    • /
    • 제47권4호
    • /
    • pp.41.1-41.20
    • /
    • 2022
  • Objectives: This study compared the clinical and radiological outcomes of regenerative endodontic procedures (REPs) using blood clots (BCs), platelet-rich plasma (PRP), and platelet-rich fibrin (PRF) through intraoral periapical radiography (IOPAR) and cone-beam computed tomography (CBCT). Materials and Methods: Forty-five single-rooted necrotic teeth with periapical pathology were randomly allocated to receive BC, PRP, or PRF as an individual scaffold. Outcomes were evaluated in 35 teeth in 23 patients with a follow-up period of 12-24 months through qualitative IOPAR scoring and quantitative CBCT measurements. Healing of periapical lesions and in immature teeth, changes in the apical foramen diameter (AFD), root wall thickness (RWT), and root length (RL) were assessed. A p value less than 0.05 was considered to indicate statistical significance. Results: All teeth were asymptomatic except 1 in the PRP group. Periapical lesion healing was seen in all except 2 teeth in the BC group and 3 in the PRP group. Both IOPAR and CBCT revealed no significant differences in bone healing or changes in AFD, RWT, and RL among the 3 groups. A positive pulp sensibility response to the cold test was seen in 2 teeth in the BC group, but none to the electric pulp test. Intracanal calcification (ICC) was evident in more teeth in the BC group than in the PRP and PRF groups, and was also significantly higher in immature teeth. Conclusions: Our results revealed that BC, PRP, and PRF have similar potential as scaffolds in REPs, and ICC may be a concern for long-term outcomes.

혈관내피세포 채취의 원천으로 인간 지방조직의 활용 (Use of Human Adipose Tissue as a Source of Endothelial Cells)

  • 박봉욱;하영술;김진현;조희영;정명희;김덕룡;김욱규;김종렬;장중희;변준호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제32권4호
    • /
    • pp.299-305
    • /
    • 2010
  • Purpose: Adipose tissue is located beneath the skin, around internal organs, and in the bone marrow in humans. Its main role is to store energy in the form of fat, although it also cushions and insulates the body. Adipose tissue also has the ability to dynamically expand and shrink throughout the life of an adult. Recently, it has been shown that adipose tissue contains a population of adult multipotent mesenchymal stem cells and endothelial progenitor cells that, in cell culture conditions, have extensive proliferative capacity and are able to differentiate into several lineages, including, osteogenic, chondrogenic, endothelial cells, and myogenic lineages. Materials and Methods: This study focused on endothelial cell culture from the adipose tissue. Adipose tissues were harvested from buccal fat pad during bilateral sagittal split ramus osteotomy for surgical correction of mandibular prognathism. The tissues were treated with 0.075% type I collagenase. The samples were neutralized with DMEM/and centrifuged for 10 min at 2,400 rpm. The pellet was treated with 3 volume of RBC lysis buffer and filtered through a 100 ${\mu}m$ nylon cell strainer. The filtered cells were centrifuged for 10 min at 2,400 rpm. The cells were further cultured in the endothelial cell culture medium (EGM-2, Cambrex, Walkersville, Md., USA) supplemented with 10% fetal bovine serum, human EGF, human VEGF, human insulin-like growth factor-1, human FGF-$\beta$, heparin, ascorbic acid and hydrocortisone at a density of $1{\times}10^5$ cells/well in a 24-well plate. Low positivity of endothelial cell markers, such as CD31 and CD146, was observed during early passage of cells. Results: Increase of CD146 positivity was observed in passage 5 to 7 adipose tissue-derived cells. However, CD44, representative mesenchymal stem cell marker, was also strongly expressed. CD146 sorted adipose tissue-derived cells was cultured using immuno-magnetic beads. Magnetic labeling with 100 ${\mu}l$ microbeads per 108 cells was performed for 30 minutes at $4^{\circ}C$ a using CD146 direct cell isolation kit. Magnetic separation was carried out and a separator under a biological hood. Aliquous of CD146+ sorted cells were evaluated for purity by flow cytometry. Sorted cells were 96.04% positivity for CD146. And then tube formation was examined. These CD146 sorted adipose tissue-derived cells formed tube-like structures on Matrigel. Conclusion: These results suggest that adipose tissue-derived cells are endothelial cells. With the fabrication of the vascularized scaffold construct, novel approaches could be developed to enhance the engineered scaffold by the addition of adipose tissue-derived endothelial cells and periosteal-derived osteoblastic cells to promote bone growth.

혈관내피유사세포 채취의 원천으로 골막의 활용 (Use of Peristeum as a Source of Endothelial-like Cells)

  • 박봉욱;김신원;김욱규;하영술;김진현;김덕룡;성일용;조영철;손장호;김종렬;변준호
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제33권5호
    • /
    • pp.385-391
    • /
    • 2011
  • Purpose: The periosteum is a well-known source of osteogenic precursor cells for tissue-engineered bone formation. However, cultured endothelial or endothelial-like cells derived from periosteum have not yet been investigated. This study focused on endothelial-like cell culture from the periosteum. Methods: Periosteal tissues were harvested from the mandible during surgical extraction of lower impacted third molars. The tissues were treated with 0.075% type I collagenase in phosphate-buffered saline (PBS) for 1 hr at $37^{\circ}C$ to release cellular fractions. The collagenase was inactivated with an equal volume of DMEM/10% fetal bovine serum (FBS) and the infranatant was centrifuged for 10 min at 2,400 rpm. The cellular pellet was filtered through a $100{\mu}m$ nylon cell strainer, and the filtered cells were centrifuged for 10 min at 2,400 rpm. The resuspended cells were plated into T25 flasks and cultured in endothelial cell basal medium (EBM)-2. Results: Among the hematopoietic markers, CD146 was more highly expressed than CD31 and CD34. The periosteal-derived cells also expressed CD90 and CD166, mesenchymal stem cell markers. Considering that the expression of CD146 was constant and that the expression of CD90 was lower at passage 5, respectively, the CD146 positive cells in passage 5 were isolated using the magnetic cell sorting (MACS) system. These CD146 sorted, periosteal-derived cells formed tube-like structures on Matrigel. The uptake of acetylated, low-density lipoprotein, labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI-Ac-LDL) was also examined in these cells. Conclusion: These results suggest that the CD146-sorted positive cells can be referred to as periosteal-derived CD146 positive endothelial-like cells. In particular, when a co-culture system with endothelial and osteoblastic cells in a three-dimensional scaffold is used, the use of periosteum as a single cell source would be strongly beneficial for bone tissue engineering.

탈미네랄 골분이 비율별로 포접된 알지네이트 미세캡슐을 이용한 조직공학적 연골재생 (Effect of Ratio of Demineralized Bone Powder with Alginate Microcapsules on Articular Cartilage Regeneration)

  • 김아람;김혜민;이정근;이지혜;송정은;윤건호;이동원;강길선
    • 폴리머
    • /
    • 제36권6호
    • /
    • pp.768-775
    • /
    • 2012
  • 해조류로부터 얻어지는 알지네이트는 캡슐화된 세포의 생존율에 긍정적인 영향을 끼치며 살아있는 세포를 신속하게 포접하여 캡슐화할 수 있어 세포이식을 위한 생체재료 분야에 널리 쓰인다. 탈미네랄화된 골분(DBP)은 천연 뼈조직으로부터 유래되어 조직과의 반응정도가 낮고 항원성 또한 낮아 임상에 적용되어 사용되어 왔다. 알지네이트에 비율별 DBP을 포함시켜 연골세포를 파종한 뒤 미세캡슐을 제조한 후 MTT 분석을 통하여 세포의 부착 및 증식률을 관찰하였고 glycosaminoglycan(sGAG)와 콜라겐 함량 측정과 연골세포의 특정유전자 표현형을 확인하기 위하여 PCR을 실시하였다. 또한 연골세포가 파종된 알지네이트 미세캡슐을 누드마우스의 피하에 이식한 뒤 적출하여 면역화학적 염색을 실시하였다. 실험 결과 1%의 DBP를 함유한 알지네이트 미세캡슐에서 가장 높은 세포 증식률을 보였고 표현형 유지에도 긍정적인 영향을 미치는 것을 확인하였다. 이번 연구 결과를 토대로 알지네이트와 DBP를 이용한 미세캡슐을 제조함으로써 DBP내의 성장인자와 알지네이트의 상호작용으로 인하여 연골세포의 성장에 긍정적인 영향을 미쳐 생체공학적 지지체로 적합할 것으로 예상된다.