• Title/Summary/Keyword: Bone regeneration

Search Result 1,028, Processing Time 0.04 seconds

Synthesis and evaluation of PDLs22 recombinant protein (PDLs22 재조합 단백질의 합성과 평가)

  • Lee, Kyoung Yeon;Choi, Yong-Seok;Lee, You-Jin;Bae, Hyun-Sook;Kim, Heung-Jeong;Cho, Kwang-Hee;Jang, Hyun-Seon;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.1
    • /
    • pp.35-44
    • /
    • 2007
  • Periodontal ligament (PDL) is the connective tissue located between the tooth root and alveolar bone. In a previous study, PDLs22 was isolated as a PDL-specific gene by using subtractive hybrid-ization between cultured PDL fibroblasts and gingival fibroblasts. It was also suggested that PDLs22 plays important roles in the development, differentiation and maintenance of periodontal tissues. However, little is known about functional study of PDLs22 using recombinant protein in PDL fibroblast differentiation and periodontium formation. In this study, in order to produce the PDLs22 recombinat protein, PDLs22 expression vector were constructed and expressed its protein in various host cell and temperature conditions. The results were as follows: 1. PDLs22 protein was not strongly expressed In the induction system using pRSET-PDLs22 construct. 2. When the BL21(DE3) pLysS was used as a expression host, PDLS22 protein was strongly ex-pressed in the induction system using pHCEIIBNd-PDLs22 construct. 3. The PDLs22 protein was recognized at a molecular weight of 28 kDa in western blots. 4. Almost of the expressed PDLs22 protein was not soluble and observed like as inclusion body. 5. The protein solubility was not improved after modification of induction time and temperature during PDLs22 protein production. In this study, the system for the PDLs22 protein production was connstructed. However, the re-results suggest that further studies will be needed to produce the considerable amount of PDLs22 re-combinat protein, which can use for the periodontal regeneration.

Gene Expression of Exposure to Mineral Trioxide Aggregate(MTA) on Dental Pulp Cells (Mineral Trioxide Aggregate(MTA)에 의한 치수세포의 유전자 발현변화)

  • Choi, Yu-Seok;Lee, Nan-Young;Lee, Sang-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.1
    • /
    • pp.30-38
    • /
    • 2008
  • Dental pulp cells are assumed to possess the capacity to elaborate both bone and dentin matrix under the pathological conditions following tooth injury. The purpose of this study is to examine the effects of mineral trioxide aggregate (MTA) on various gene expression regarding dentinogenesis and cell viability assay in cultured primary human dental pulp cells. The author also examined the effects of this material on cellular alkaline phosphatase activity as a potential indicator of dentinogenesis. For gene expression on MTA, reverse transcriptase polymerase chain reaction was performed using primer sets of glyceraldehyde-3-phosphate dehydrogenase, type I collagen, alkaline phosphatase(ALP), osteonectin, and dentin sialoprotein after 2 and 4 days. Cell viability assay showed that the proportion of MTA-treated pulp cells which had been exposed for 5 days to MTA was higher than that of the control cells. Among the genes investigated in this study, ALP and osteonectin(SPARC) were increased in MTA treated group than in control. These findings suggest that this dental pulp culture system may be useful in the future as a model for studying the mechanisms underlying dentin regeneration after the treatment with MTA. Exposure to MTA material would not induce cytotoxic response in the dental pulp cells. In addition, MTA could influence the behavior of human pulp cells by increasing the ALP activity and SPARC synthesis.

  • PDF

Antiapoptotic effects of Phe140Asn, a novel human granulocyte colony-stimulating factor mutant in H9c2 rat cardiomyocytes

  • Chung, Hee Kyoung;Ko, Eun Mi;Kim, Sung Woo;Byun, Sung-June;Chung, Hak-Jae;Kwon, Moosik;Lee, Hwi-Cheul;Yang, Byoung-Chul;Han, Deug-Woo;Park, Jin-Ki;Hong, Sung-Gu;Chang, Won-Kyong;Kim, Kyung-Woon
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.742-747
    • /
    • 2012
  • Granulocyte colony-stimulating factor (G-CSF) is used for heart failure therapy and promotes myocardial regeneration by inducing mobilization of bone marrow stem cells to the injured heart after myocardial infarction; however, this treatment has one weakness in that its biological effect is transient. In our previous report, we generated 5 mutants harboring N-linked glycosylation to improve its antiapoptotic activities. Among them, one mutant (Phe140Asn) had higher cell viability than wild-type hG-CSF in rat cardiomyocytes, even after treatment with an apoptotic agent ($H_2O_2$). Cells treated with this mutant significantly upregulated the antiapoptotic proteins, and experienced reductions in caspase 3 activity and PARP cleavage. Moreover, the total number of apoptotic cells was dramatically lower in cultures treated with mutant hG-CSF. Taken together, these results suggest that the addition of an N-linked glycosylation was successful in improving the antiapoptotic activity of hG-CSF, and that this mutated product will be a feasible therapy for patients who have experienced heart failure.

Induction of Angiogenesis by Matrigel Coating of VEGF-Loaded PEG/PCL-Based Hydrogel Scaffolds for hBMSC Transplantation

  • Jung, Yeon Joo;Kim, Kyung-Chul;Heo, Jun-Young;Jing, Kaipeng;Lee, Kyung Eun;Hwang, Jun Seok;Lim, Kyu;Jo, Deog-Yeon;Ahn, Jae Pyoung;Kim, Jin-Man;Huh, Kang Moo;Park, Jong-Il
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.663-668
    • /
    • 2015
  • hBMSCs are multipotent cells that are useful for tissue regeneration to treat degenerative diseases and others for their differentiation ability into chondrocytes, osteoblasts, adipocytes, hepatocytes and neuronal cells. In this study, biodegradable elastic hydrogels consisting of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(${\varepsilon}$-caprolactone) (PCL) scaffolds were evaluated for tissue engineering because of its biocompatibility and the ability to control the release of bioactive peptides. The primary cultured cells from human bone marrow are confirmed as hBMSC by immunohistochemical analysis. Mesenchymal stem cell markers (collagen type I, fibronectin, CD54, $integrin1{\beta}$, and Hu protein) were shown to be positive, while hematopoietic stem cell markers (CD14 and CD45) were shown to be negative. Three different hydrogel scaffolds with different block compositions (PEG:PCL=6:14 and 14:6 by weight) were fabricated using the salt leaching method. The hBMSCs were expanded, seeded on the scaffolds, and cultured up to 8 days under static conditions in Iscove's Modified Dulbecco's Media (IMDM). The growth of MSCs cultured on the hydrogel with PEG/PCL= 6/14 was faster than that of the others. In addition, the morphology of MSCs seemed to be normal and no cytotoxicity was found. The coating of the vascular endothelial growth factor (VEGF) containing scaffold with Matrigel slowed down the release of VEGF in vitro and promoted the angiogenesis when transplanted into BALB/c nude mice. These results suggest that hBMSCs can be supported by a biode gradable hydrogel scaffold for effective cell growth, and enhance the angiogenesis by Matrigel coating.

Fabrication of PCL Scaffolds According to Various Pore Patterns Using Polymer Deposition System and Design of Experiments (폴리머 적층 시스템과 실험계획법을 이용한 다양한 공극 패턴에 따른 PCL 인공지지체의 제작 연구)

  • Sa, Min-Woo;Choi, Sun-Woong;Lee, Jae-Wook;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.645-653
    • /
    • 2017
  • In bone tissue engineering, polycaprolactone (PCL) is one of the most widely used biomaterials in the manufacturing of scaffolds as a synthetic polymer having biodegradability and biocompatibility. The strut width in the fabrication of scaffolds is an important part of tissue regeneration in in-vitro and in-vivo experiments, because it affects not only the pore size but also the porosity. In this study, we used polymer deposition system (PDS) and design of experiments (DOE) to explore the optimal process conditions to achieve a systematic and efficient scaffold manufacturing process, using temperature, pressure, scan velocity, and nozzle tip height as the parameters for the experiments. The aim of this research was to fabricate a 3D PCL scaffold having a uniform strut width of $150{\mu}m$ using DOE; it was proved that the strut width was constant in all the experimental groups by fabricating the PCL scaffolds according to various pore patterns as well as one pore pattern.

Studies on the Artificial Induction of Antlerogenesis on Reproduction in Female Elk Deer (암사슴의 뿔 발생 인공 유도가 번식에 미치는 영향)

  • Kim, Sang-Woo;Seo, Kil-Woog;Sang, Byung-Chan;Lee, Kyu-Seung
    • Korean Journal of Agricultural Science
    • /
    • v.34 no.1
    • /
    • pp.37-46
    • /
    • 2007
  • This study was conducted to investigate the antler induction rate and production by artificial induction of antlerogenesis using $CaCl_2$ injection on both periosteum around area of horn development for the frontal bone of a female elk deer which do not have an antler. The results obtained from eleven deers for verifying effect of the female's antler induction on reproduction are as follows: The antler development induction by $CaCl_2$injection is higher on the treatments of 30 and 50% of $CaCl_2$ injection than those on the treatments of 15 %. The antler production is higher on the 30 % $CaCl_2$ injection than those of 15 and 50 % $CaCl_2$ injection. For 30 % $CaCl_2$ injection, the antler production is higher in 1.5 and 2.0 ml of % $CaCl_2$ injection than the other injection level. After the induction of antler development, the birth rate is not changed as of 75~100 %, while the regeneration rate of the antler which was not constant in approximately 45 % for five among eleven female deer. With these results, we assume that the injection concentration and amount of $CaCl_2$ injection are around 30 % and 1.5 and 2.0 ml level which can be not only most effective conditions for the antler induction rate and production, but also these conditions do not influence the reproduction during the period of the female elk's antler development induction.

  • PDF

Effects of $H_2O_2$ and ascorbic acid on TIMP-2, Type1 collagen, and PDLs22 levels in human periodontal ligament fibroblasts (($H_2O_2$와 ascorbic acid가 사람 치주인대섬유모세포의 TIMP-2, Type 1 collagen, PDLs22 발현에 끼치는 효과)

  • Choi, Yong-Sun;Kim, So-Young;Choi, Seong-Mi;Jang, Hyun-Seon;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.4
    • /
    • pp.655-669
    • /
    • 2007
  • Reactive oxygen species (ROS) have been implicated in the pathogenesis of various diseases. And vitamin C has shown a protective effect for the tissues. The aim of this study was to evaluate the effects of $H_2O_2$ and ascorbic acid on matrix metalloproteinase-1 (MMP-1), tissue inhibitor of metalloproteinase (TIMP: TIMP-1, TIMP-2), Type 1 collagen, fibronectin, and PDLs22 level in human periodontal ligament fibroblasts (hPDLF) via reverse transcription-polymerase chain reaction (RT-PCR). hPDLF was obtained from a healthy periodontium and cultured in Dulbecco's modified Eagles's medium plus 10% fetal bone serum. The concentration of ascorbic acid in hPDLF was $50{\mu}g/ml$, and that of $H_2O_2$ in hPDLF was 0.03% and 0.00003%. Ascorbic acid only, $H_2O_2$ only and mixture of ascorbic acid and $H_2O_2$ were applied with hPDLF for 1-, 3-, and 30-min. respectively. The gene expression of MMP-1-, TIMP-1-, TIMP-2-, Type 1 collagen-, fibronectin-, and PDLs22-mRNA in hPDLF was analysed via RT-PCR. The results were as follows; 1. hPDLF in response to 30-min. incubation with 0.03% $H_2O_2$ did not show any gene expression. 2. In all the experimental groups, the gene expression of fibronectin mRNA showed the decreased tendency compared to control. 3. In all the experimental groups, the gene expression of TIMP-1 mRNA showed the tendency similar to control. 4. hPDLF in response to 30-min. incubation with 0.03% $H_2O_2$ and ascorbic acid increased mRNA induction for MMP-1. 5. In all the experimental groups, hPDLF increased mRNA induction for PDLs22, collagen type 1, and TIMP-2 compared to control. Within the limited experiments, $H_2O_2$ and ascorbic acid increased mRNA induction for PDLs22, collagen type 1, TIMP-2 in hPDLF. More research will be needed in order to confirm the relative importance of the different roles of ROS and antioxidants in hPDLF from a periodontal regeneration or repair standpoint.

The Role of SDF-1𝛼-CXCR4/CXCR7 in Migration of Human Periodontal Ligament Stem Cells

  • Jialei Xu;Fan Yang;Shuhan Luo;Yuan Gao;Dingming Huang;Lan Zhang
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.180-190
    • /
    • 2023
  • Background and Objectives: Regenerative endodontic procedures (REPs) are a research hotspot in the endodontic field. One of the biggest problems of REPs is that it is difficult to realize regeneration of pulp-dentin complex and functional reconstruction. The reason is still not clear. We hypothesize that the migration may be different in different dental stem cells. Periodontal ligament stem cells (PDLSCs) may migrate faster than stem cells of apical papilla (SCAPs), differentiating into cementum-like tissue, bone-like tissue and periodontal ligament-like tissue and, finally affecting the outcomes of REPs. Hence, this study aimed to explore the mechanism that regulates the migration of PDLSCs. Methods and Results: After isolating and culturing PDLSCs and SCAPs from human third molars, we compared the migration of PDLSCs and SCAPs. Then we investigated the role of SDF-1𝛼-CXCR4/CXCR7 axis in PDLSC migration. We further investigated the impact of Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) on PDLSC migration and the potential mechanism. PDLSCs showed better migration under both noninflammatory and inflammatory conditions than SCAPs. SDF-1𝛼 can promote the migration of PDLSCs by elevating the expression of CXCR4 and CXCR7, increasing the interaction between them, promoting expression of 𝛽-arrestin1 and activating the ERK signaling pathway. P. gingivalis LPS can promote the migration of PDLSCs toward SDF-1𝛼 through increasing the expression of CXCR4 via the NF-𝜅B signaling pathway, promoting the expression of 𝛽-arrestin1, and activating the ERK signaling pathway. Conclusions: This study helped elucidate the potential reason for the difficulty in forming pulp-dentin complex.

Effect of 2-D DBP/PLGA Hybrid Films on Attachment and Proliferation of Intervertebral Disc Cells (2차원적 DBP/PLGA 하이브리드 필름이 디스크 세포의 부착과 증식에 미치는 영향)

  • Ko, Youn-Kyung;Jeong, Jae-Soo;Kim, Soon-Hee;Lim, Ji-Ye;Rhee, John-M.;Kim, Moon-Suk;Lee, Hai-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • Because demineralized bone particle (DBP) contains various bioactive molecules such as cytokines, it is widely used biomaterials in the field of tissue engineering. In this study, we investigated the effect of 2-dimensional DBP/PLGA hybrid films on adhesion, proliferation and phenotype maintenance of intervertebral disc cells. PLGA films incorporated with different amount (0, 10, 20, 40 and 80 wt%) of DBP were prepared by the solvent evaporation method and characterized by scanning election microscopy (SEM). PLGA film has a flat and smooth surface. According to the increase of content of DBP, the surface of DBP/PLGA film exhibited few agglomerates and increased the roughness of the surface. Annulus fibrosus (AF) and nucleus pulposus (NP) cells were cultured on PLGA and DBP/PLGA film surface, and then examined the cell adhesion and proliferation by the cell count and SEM observation. The result of cell count and SEM observation revealed that 10 and 20% DBP in DBP/PLGA films were superior to adhesion and proliferation of both AF and NP cells. We confirmed that specific gene expression of disc cells on DBP/PLGA film based on the cell count result. Disc cells seeded on 20% DBP/PLGA film expressed the gene of type I and II collagen continuously. Therefore, pertinent content of biomaterials could provide more appropriate condition on adhesion and proliferation of cell. And this results may be used as a basic data for the intervertebral disc regeneration using tissue engineering.

EFFECT OF ENAMEL MATRIX DERIVATIVE (EMD, $EMDOGAIN^{(R)}$) ON THE DIFFERENTIATION OF CULTURED HUMAN PERIODONTAL LIGAMENT CELLS AND MESENCHYMAL STEM CELLS (배양된 사람 치주인대세포와 골수유래간엽줄기세포의 분화에 미치는 법랑기질유도체 (Enamel Matrix Derivative, EMD)의 영향)

  • Park, Sang-Gyu;Jue, Seong-Suk;Kwon, Yong-Dae;Choi, Byung-Joon;Kim, Young-Ran;Lee, Baek-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.4
    • /
    • pp.281-286
    • /
    • 2009
  • Introduction: Enamel matrix derivative (EMD) is a protein which is secreted by Hertwig root sheath and plays a major role in the formation of cementum and attachment of peridontium. Several studies have shown that EMD promoted the proliferation and differentiation of preosteoblasts, osteoblasts and periodontal ligament cells in vitro: however, reports showing the inhibition of osteogenic differentiation by EMD also existed. This study was designed to simultaneously evaluate the effect of EMD on the two cell lines (human mesenchymal stem cells: hMSC, human periodontal ligament derived fibroblasts: hPDLCs) by means of quantitative analysis of some bone related matrices (Alkaline phosphatase : ALP, osteopontin ; OPN, osteocalcin ; OC). Materials and Methods: hMSCs and hPDLCs were expanded and cells in the 4${\sim}$6 passages were adopted to use. hMSc and hPDLCs were cultured during 1,2,7, and 14 days with 0, 50 and 100 ${\mu}g/ml$ of EMD, respectively. ALP activity was assessed by SensoLyte ALP kit and expressed as values of the relative optical density. Among the matrix proteins of the bony tissue, OC and OPN were assessed and quantification of these proteins was evaluated by means of human OC immunoassay kit and human OPN assay kit, respectively. Results: ALP activity maintained without EMD at $1,2^{nd}$ day. The activity increased at $7^{th}$ day but decreased at $14^{th}$ day. EMD increased the activity at $14^{th}$ day in the hPDLCs culture. In the hMSCs, rapid decrease was noted in $7^{th}$ and $14^{th}$ days without regard to EMD concentrations. Regarding the OPN synthesis in hPDLCs, marked decrease of OPN was noted after EMD application. Gradual decrease tendency of OPN was shown over time. In hMSCs, marked decrease of OPN was also noted after EMD application. Overall concentration of OPN was relatively consistent over time than that in hPDLCs. Regarding the OC synthesis, in both of hPDLCs and hMSCs, inhibition of OC formation was noted after EMD application in the early stages but EMD exerted minimal effect at the later stages. Conclusion: In this experimental condition, EMD seemed to play an inhibitory role during the differentiation of hMSCs and hPDLCs in the context of OC and OPN formation. In the periodontium, there are many kinds of cells contributing to the regeneration of oral tissue. EMD enhanced ALP activity in hPDLCs rather than in hMSCs and this may imply that EMD has a positive effect on the differentiation of cementoblasts compared with the effect on hMSCs. The result of our research was consistent with recent studies in which the authors showed the inhibitory effect of EMD in terms of the differentiation of mineral colony forming cells in vitro. This in vitro study may not stand for all the charateristics of EMD; thus, further studies involving many other bone matrices and cellular attachment will be necessary.