• Title/Summary/Keyword: Bone powder

Search Result 222, Processing Time 0.032 seconds

Preparation and Biocompatibility of Composite Bone Scaffolds Using Gnotobiotic Pig Bones (무균돼지뼈를 이용한 복합 골지지체의 제조와 생체적합성 평가)

  • Im, Ae-Lee;Chung, Jong-Hoon;Lim, Ki-Taek;Choung, Pill-Hoon;Hong, Ji-Hyang
    • Journal of Biosystems Engineering
    • /
    • v.32 no.1 s.120
    • /
    • pp.50-56
    • /
    • 2007
  • Highly porous composite bioceramic bone scaffolds were developed using sintered gnotobiotic pig bones. These scaffolds consisted of poly-D,L-lactic acid (P(D,L)LA) and bioceramic materials of pig bone powder. The bone scaffolds were able to promote biocompatibility and possess interconnected pores that would support cell adhesion and proliferation adequately. The composite scaffolds were tested with dental pulp stem cells for cytotoxicity test. Cells seeded on the composite scaffolds were readily attached, well proliferated, as confirmed by cytotoxicity test, and cell adhesion assessment. The composite bone scaffold had no toxicity in cytotoxicity test on the extract of 0.013 g scaffold to 2 ml culture medium. The cells on the composite bone scaffold proliferated better than cells on the P(D,L)LA scaffolds.

Clinical application of auto-tooth bone graft material

  • Park, Sung-Min;Um, In-Woong;Kim, Young-Kyun;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.1
    • /
    • pp.2-8
    • /
    • 2012
  • Introduction: Auto-tooth bone graft material consists of 55% inorganic hydroxyapatite (HA) and 45% organic substances. Inorganic HA possesses properties of bone in terms of the combining and dissociating of calcium and phosphate. The organic substances include bone morphogenetic protein and proteins which have osteoinduction capacity, as well as the type I collagen identical to that found in alveolar bone. Auto-tooth bone graft material is useful as it supports excellent bone regeneration capacity and minimizes the possibility of foreign body reaction,genetic diseases and disease transmission. Materials and Methods: Implant placement combined with osteoinductive regeneration,preservation of extraction socket, maxillary sinus augmentation, and ridge augmentation using block type,powder type, and block+powder type autobone graft materialwere performed for 250 patients with alveolar bone defect and who visited the Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University from September 2009 to August 2011. Results: Clinical assessment: Among the 250 patients of auto-tooth bone graft, clinical assessment was performed for 133 cases of implant placement. The average initial stabilization of placed implants was 74 implant stability quotient (ISQ). Radiological assessment: The average loss of crestal bone in the mandible as measured 6 months on the average after the application of prosthesis load was 0.29 mm, ranging from 0 mm to 3.0 mm. Histological assessment: In the histological assessment, formation of new bone, densified lamellated bone, trabecular bones, osteoblast, and planting fixtures were investigated. Conclusion: Based on these results, we concluded that auto-tooth bone graft material should be researched further as a good bone graft material with osteoconduction and osteoinduction capacities to replace autogenous bone, which has many limitations.

Effects of Mulberry-Leaf Powder Tofu Consumption on Carpal Bone Mineral Density, Biochemical Bone Turnover Markers and Serum Lipid Profiles in Smoking Male Adults Living in Choongnam (뽕잎 분말 첨가 두부 섭취가 충남 일부 지역에 거주하는 흡연 남자 성인의 손목 골밀도, 생화학 골대사 지표 및 혈청 지질 성상에 미친 영향)

  • Kim, Ae-Jung;Kim, Myung-Hwan;Chung, Kun-Sub
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • The effects of mulberry-leaf powder Tofu(MPT) on anthropometric measurements, including bone mineral density(BMD) in the right carpus, biochemical bone turnover markers, serum levels of lipids and macrominerals, were investigated in 30 smoking male adults who lived in Choongnam were given MPT(100 g/day) for 4 weeks. The average ages, number of smoked cigarettes and packyear were 22.38 years, 15.12/day and 3.54 years, respectively. The nutrient contents per 100 g MPT were 86.10 kcal energy, 8.98 g protein, 0.53 mg fiber, 211.33 mg Ca and 1.59 g fat. Anthropometric measurements, including dietary intake using the 24-hours recall method, carpal BMD using DEXA, serum levels of protein, albumin and glucose, lipid profiles (cholesterol, triglyceride, HDL-cholesterol, LDL-cholesterol) with Al(atherosclerosis index), HTR, CRF, LHBt, some biomarkers of BMD(serum alkaline phosphatase activity, osteocalcin, urinary DPD), and serum macrominerals(Ca, Ca/P ratio, Mg) and Pb were analyzed before and after consumption of MPT. After MPT consumption, dietary intakes of plant protein, total Ca and plant Ca increased significantly, but there were no significant differences in anthropometric measurements, BMD with bone metabolism markers, serum levels of protein, albumin or glucose, lipid profiles with AI, HTR, LHR and CRF.

  • PDF

The Regenerative effects of Platelet-Rich Plasma and Enamel Matrix Protein on Grade III Furcation defects in beagle dogs (혈소판 농축혈장과 법랑기질 단백질이 성견 3급 이개부 병소의 재생에 미치는 영향)

  • Kim, Young-Jun;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.823-837
    • /
    • 2005
  • The purpose of this study was to study the histopathological correlation between the use of platelet-rich plasma and enamel matrix protein used in conjunction with xenograft. compared to a control group with regards to bone regeneration at the grade III furcation area in beagle dogs. Control group was treated with bovine derived bone $powder(Biocera^{(R)})$, and experimental I group was treated with bovine derived bone powder and Platelet-rich plasma and experimental II group was treated with bovine derived bone powder and Enamel matrix $protein(Emdogain^{(R)})$. The regeneration rate of bone formation was observed and compared histopathologically at 2. 4, and 8 weeks after surgery. The results were as follows: 1. In control group and both experimental groups. inflammatory cells were observed but, new bone formation wasn't. 2. In control group, new cementum on the notch was found in 4 weeks, less mature periodontal ligament when compared to that of experimental group was found and cementum formation was great but, regeneration couldn't be seen in 8 weeks. 3. Experimental I group. new bone formation in the area adjacent to alveolar bone and graft material surrounded by more dense connective tissue were found in 4 weeks. New bone formation up to crown portion was found and periodontal ligament was aligned functionally and cementum more mature. 4. Experimental II group, new bone formation was found under the defect area in 4 weeks and new bone formation around graft material in 8 weeks, too, and there were a number of fibroblasts, blood vessels, acellular cementum, which was less mature when compared to that of experimental I group, and dense collagen fiber like which normal periodontal ligament has in periodontal ligament of experimental II group in 8 weeks. 5. As a result of histologic finding, bone formation rate were 18.0${\pm}$7.87%(control group), 34. 05${pm}$7.25%(experimental I group), 19.33 ${pm}$5.15%(experimental II group) in 4 weeks and 21.89${pm}$1.58%(control group), 38.82${pm}$3.2(experimental I group), 37.65${pm}$9.22%(experimental II group) in 8 weeks. 6. Statistically significant ratio of bone formation was observed in experimental I group in 4 weeks and in experimental II group in 8 weeks. When experimental I group was compared to experimental II group, the ratio of bone formation in experimental I group was higher than that in experimental II group in 4 weeks(p<0.05). This results suggest that platelet-rich plasma showed more new bone formation than enamel matrix protein within 4 weeks. And use of enamel matrix protein in the treatment of periodontal bone defects starts to enhance regeneration after 8 weeks in beagle dogs.

Biophysical properties of PPF/HA nanocomposites reinforced with natural bone powder

  • Kamel, Nagwa A.;Mansour, Samia H.;Abd-El-Messieh, Salwa L.;Khalil, Wafaa A.;Abd-El Nour, Kamal N.
    • Advances in materials Research
    • /
    • v.4 no.3
    • /
    • pp.145-164
    • /
    • 2015
  • Biodegredable and injectable nanocomposites based on polypropylene fumarate (PPF) as unsaturated polyester were prepared. The investigated polyester was crosslinked with three different monomers namely N-vinyl pyrrolidone (NVP), methyl methacrylate (MMA) and a mixture of NVP and MMA (1:1 weight ratio) and was filled with 45 wt% of hydroxyapatite (HA) incorporated with different concentrations of chemically treated natural bone powder (NBP) (5, 10 and 15 wt%) in order to be used in treatment of orthopedics bone diseases and fractures. The nanocomposites immersed in the simulated body fluid (SBF) for 30 days, after the period of immersion in-vitro bioactivity of the nanocomposites was studied through Fourier transform infrared (FTIR), scanning electron microscope (SEM), energy dispersive X-ray (EDX) in addition to dielectric measurements. The degradation time of immersed samples and the change in the pH of the SBF were studied during the period of immersion.

Effect of 50 ㎛ class granules on the Injection Behavior of Brushite Bone Cement Prepared via Pre-dissolution Route

  • Mun, Da Hye;Lee, Sang Cheon;Oh, Kyung-Sik
    • Journal of Powder Materials
    • /
    • v.27 no.6
    • /
    • pp.468-476
    • /
    • 2020
  • The bone cement used for vertebroplasty must be sufficiently injectable. The introduction of granules reduces the amount of liquid required for liquefaction, implying that higher fluidity is achieved with the same amount of liquid. By employing β-tricalcium phosphate granules with an average diameter of 50 ㎛, changes in injectability are observed based on the paste preparation route and granular fraction. To obtain acceptable injectability, phase separation must be suppressed during injection, and sufficient capillary pressure to combine powder and liquid must work evenly throughout the paste. To achieve this, the granules should be evenly distributed. Reduced injection rates are observed for dry mixing and excessive granular content, owing to phase separation. All these correspond to conditions under which the clustered granules weakened the capillary pressure. The injected ratio of the paste formed by wet mixing displayed an inverted U-type shift with the granular fraction. The mixture of granules and powder resulted in an increase in the solid volume fraction, and a decrease in the liquid limit. This resulted in the enhancement of the liquidity, owing to the added liquid. It is inferred that the addition of granules improves the injectability, provided that the capillary pressure in the paste is maintained.

Fabrication of Porous Structure of BCP Sintered Bodies Using Microwave Assisted Synthesized HAp Nano Powder

  • Youn, Min-Ho;Paul, Rajat Kanti;Song, Ho-Yeon;Lee, Byong-Taek
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.475-476
    • /
    • 2006
  • Using microwave synthesized HAp nano powder and polymethyl methacrylate (PMMA) as a pore-forming agent, the porous biphasic calcium phosphate (BCP) ceramics were fabricated depending on the sintering temperature. The synthesized HAp powders was about 70-90 nm in diameter. In the porous sintered bodies, the pores having $150-180\;{\mu}m$ were homogeneously dispersed in the BCP matrix. Some amounts of pores interconnected due the necking of PMMA powders which will increase the osteoconductivity and ingrowth of bone-tissues while using as a bone substrate. As the sintering temperature increased, the relative density increased and showed the maximum value of 79.6%. From the SBF experiment, the maximum resorption of $Ca^{2+}$ ion was observed in the sample sintered at $1000^{\circ}C$.

  • PDF