• Title/Summary/Keyword: Bone marrow derived mesenchymal stem cell

Search Result 102, Processing Time 0.027 seconds

Growth and Osteoblastic Differentiation of Mesenchymal Stem Cells on Silk Scaffolds

  • Cho, Hee-Yeon;Baik, Young-Ae;Jeon, Suyeon;Kwak, Yoon-Hae;Kweon, Hae Yong;Jo, You Young;Lee, Kwang Gill;Park, Young Hwan;Kang, Dongchul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.2
    • /
    • pp.303-311
    • /
    • 2013
  • In this study, we compared the efficiency of osteoblast differentiation media (ODM) containing three distinct reagent combinations in osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) in monolayer culture. In addition, we analyzed growth and differentiation of hBMSCs on silk scaffolds and examined the bone-forming activity of a nanofibrous silk scaffold in a tibia diaphysis defect model of a rat hind limb with intramedullary nailing. Although all three ODM increased alkaline phosphatase activity to a comparable extent, the ODM containing bone morphogenetic protein-2 (BMP-2) was found to be significantly less effective in promoting mineral deposition than the others. Growth of hBMSCs on sponge-form silk scaffolds was faster than on nanofibrous ones, while osteoblastic differentiation was apparent in the cells grown on either type of scaffold. By contrast, bone formation was observed only at the edge of the nanofibrous scaffold implanted in the tibia diaphysis defect, suggesting that use of the silk scaffold alone is not sufficient for the reconstitution of the long bone defect. Since silk scaffolds can support cell growth and differentiation in vitro, loading MSCs on scaffolds might be necessary to improve the bone-forming activity of the scaffold in the long bone defect model.

Combination Therapy for Gliomas Using Temozolomide and Interferon-Beta Secreting Human Bone Marrow Derived Mesenchymal Stem Cells

  • Park, Jae-Hyun;Ryu, Chung Heon;Kim, Mi Jin;Jeun, Sin-Soo
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.5
    • /
    • pp.323-328
    • /
    • 2015
  • Objective : Malignant gliomas are the most common primary tumors of the central nervous system and the prognosis of patients with gliomas is poor. The combination of interferon-bata (IFN-${\beta}$) and temozolomide (TMZ) has shown significant additive antitumor effects in human glioma xenograft models. Considering that the poor survival of patients with human malignant gliomas relates partly to the inability to deliver therapeutic agents to the tumor, the tropism of human bone marrow-derived mesenchymal stem cells (MSC) for malignant gliomas can be exploited to therapeutic advantages. We investigated the combination effects of TMZ and MSCs that secrete IFN-${\beta}$ on gliomas. Methods : We engineered human MSCs to secret mouse IFN-${\beta}$ (MSC-IFN-${\beta}$) via adenoviral transduction and confirmed their secretory capacity using enzyme-linked immunosorbent assays. In vitro and in vivo experiments were performed to determine the effects of the combined TMZ and MSC-IFN-${\beta}$ treatment. Results : In vitro, the combination of MSC-IFN-${\beta}$ and TMZ showed significantly enhanced antitumor effects in GL26 mouse glioma cells. In vivo, the combined MSC-IFN-${\beta}$ and TMZ therapy significantly reduced the tumor size and improved the survival rates compared to each treatment alone. Conclusion : These results suggest that MSCs can be used as an effective delivery vehicle so that the combination of MSC-IFN-${\beta}$ and TMZ could be considered as a new option for the treatment of malignant gliomas.

Isolation of Mesenchymal Stem-like Cells from a Pituitary Adenoma Specimen

  • Shim, Jin-Kyoung;Kang, Seok-Gu;Lee, Ji-Hyun;Chang, Jong Hee;Hong, Yong-Kil
    • Biomedical Science Letters
    • /
    • v.19 no.4
    • /
    • pp.295-302
    • /
    • 2013
  • Some of the pituitary adenomas are invasive and spread into neighboring tissues. In previous studies, the invasion of pituitary adenomas is thought to be associated with epithelial-mesenchymal transition (EMT). In addition to that, we thought that mesenchymal stem cells (MSCs) exist in relevant microenvironment in pituitary adenoma. However, it has been little known about the existence of MSCs from pituitary adenoma. So we investigated whether mesenchymal stem-like cells (MSLCs) can be isolated from the pituitary adenoma specimen. We isolated and cultured candidate MSLCs from the fresh pituitary adenoma specimen with the same protocols used in culturing bone marrow derived MSCs (BM-MSCs). The cultured candidate MSLCs were analyzed by fluorescence-activated cell sorting (FACS) for surface markers associated with MSCs. Candidate MSLCs were exposed to mesenchymal differentiation conditions to determine the mesenchymal differentiation potential of these cells. To evaluate the tumorigenesis of candidate MSLCs from pituitary adenoma, we implanted these cells into the brain of athymic nude mice. We isolated cells resembling BM-MSCs named pituitary adenoma stroma mesenchymal stem-like cells (PAS-MSLCs). PAS-MSLCs were spindle shaped and had adherent characteristics. FACS analysis identified that the PAS-MSLCs had a bit similar surface markers to BM-MSCs. Isolated cells expressed surface antigen, positive for CD105, CD75, and negative for CD45, NG2, and CD90. We found that these cells were capable of differentiation into adipocytes, osteocytes and chondrocytes. Tumor was not developed in the nude mice brains that were implanted with the PAS-MSLCs. In this study, we showed that MSLCs can be isolated from a pituitary adenoma specimen which is not tumorigenic.

Olig2-expressing Mesenchymal Stem Cells Enhance Functional Recovery after Contusive Spinal Cord Injury

  • Park, Hwan-Woo;Oh, Soonyi;Lee, Kyung Hee;Lee, Bae Hwan;Chang, Mi-Sook
    • International Journal of Stem Cells
    • /
    • v.11 no.2
    • /
    • pp.177-186
    • /
    • 2018
  • Background and Objectives: Glial scarring and inflammation after spinal cord injury (SCI) interfere with neural regeneration and functional recovery due to the inhibitory microenvironment of the injured spinal cord. Stem cell transplantation can improve functional recovery in experimental models of SCI, but many obstacles to clinical application remain due to concerns regarding the effectiveness and safety of stem cell transplantation for SCI patients. In this study, we investigated the effects of transplantation of human mesenchymal stem cells (hMSCs) that were genetically modified to express Olig2 in a rat model of SCI. Methods: Bone marrow-derived hMSCs were genetically modified to express Olig2 and transplanted one week after the induction of contusive SCI in a rat model. Spinal cords were harvested 7 weeks after transplantation. Results: Transplantation of Olig2-expressing hMSCs significantly improved functional recovery in a rat model of contusive SCI model compared to the control hMSC-transplanted group. Transplantation of Olig2-expressing hMSCs also attenuated glial scar formation in spinal cord lesions. Immunohistochemical analysis showed that transplanted Olig2-expressing hMSCs were partially differentiated into Olig1-positive oligodendrocyte-like cells in spinal cords. Furthermore, NF-M-positive axons were more abundant in the Olig2-expressing hMSC-transplanted group than in the control hMSC-transplanted group. Conclusions: We suggest that Olig2-expressing hMSCs are a safe and optimal cell source for treating SCI.

Evaluation of Spinal Fusion Using Bone Marrow Derived Mesenchymal Stem Cells with or without Fibroblast Growth Factor-4

  • Seo, Hyun-Sung;Jung, Jong-Kwon;Lim, Mi-Hyun;Hyun, Dong-Keun;Oh, Nam-Sik;Yoon, Seung-Hwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.4
    • /
    • pp.397-402
    • /
    • 2009
  • Objective : In this study, the authors assessed the ability of rat bone marrow derived mesenchymal stem cells (BMDMSCs), in the presence of a growth factor, fibroblast growth factor-4 (FGF-4) and hydroxyapatite, to act as a scaffold for posterolateral spinal fusion in a rat model. Methods : Using a rat posterolateral spine fusion model. the experimental study comprised 3 groups. Group 1 was composed of 6 animals that were implanted with 0.08 gram hydroxyapatite only. Group 2 was composed of 6 animals that were implanted with 0.08 gram hydroxyapatite containing $1{\times}10^6/60{\mu}L$ rat of BMDMSCs. Group 3 was composed of 6 animals that were implanted with 0.08 gram hydroxyapatite containing $1{\times}10^6/60{\mu}L$ of rat BMDMSCs and FGF-4 $1{\mu}G$ to induce the bony differentiation of the BMDMSCs. Rats were assessed using radiographs obtained at 4, 6, and 8 weeks postoperatively. After sacrifice, spines were explanted and assessed by manual palpation, high-resolution microcomputerized tomography, and histological analysis. Results : Radiographic, high-resolution microcomputerized tomographic, and manual palpation revealed spinal fusion in five rats (83%) in Group 2 at 8 weeks. However, in Group 1, three (60%) rats developed fusion at L4-L5 by radiography and two (40%) by manual palpation in radiographic examination. In addition, in Group 3, bone fusion was observed in only 50% of rats by manual palpation and radiographic examination at this time. Conclusion : The present study demonstrates that 0.08 gram of hydroxyapatite with $1{\times}10^6/60{\mu}L$ rat of BMDMSCs induced bone fusion. FGF4, added to differentiate primitive $1{\times}10^6/60{\mu}L$ rat of BMDMSCs did not induce fusion. Based on histologic data, FGF-4 appears to induce fibrotic change rather than differentiation to bone by $1{\times}10^6/60{\mu}L$ rat of BMDMSCs.

THE EFFECT OF GROWTH FACTORS ON OSTEOGENIC DIFFERENTIATION OF ADIPOSE TISSUE-DERIVED STROMAL CELLS (지방기질유래 줄기세포의 골 분화 시 성장인자의 효과)

  • Kim, Uk-Kyu;Choi, Yeon-Sik;Jung, Jin-Sup
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.4
    • /
    • pp.327-333
    • /
    • 2006
  • Future cell-based therapies such as tissue engineering will benefit from a source of autogenous pluripotent stem cells. There are embryonic stem cells (ESC) and autologous adult stem cells, two general types of stem cells potentilally useful for these applications. But practical use of ESC is limited due to potential problems of cell regulation and ethical considerations. To get bone marrow stem cells is relatively burden to patients because of pain, anesthesia requirement. The ideal stem cells are required of such as the following advantages: easy to obtain, minimal patient discomfort and a capability of yielding enough cell numbers. Adipose autologus tissue taken from intraoral fatty pad or abdomen may represent such a source. Our study designed to demonstrate the ability of human adipose tissue-derived stromal cells (hATSC) from human abdominal adipose tissue diffentiating into osteocyte and adipocyte under culture in vitro conditions. As a result of experiment, we identified stromal cell derived adipose tissue has the multilineage potentiality under appropriate culture conditions. And the adipose stromal cells expressed several mesenchymal stem cell related antigen (CD29, CD44) reactions. Secondary, we compared the culture results of a group of hATSC stimulated with TGF-${\beta}$1, bFGF with a hATSC group without growth factors to confirm whether cytokines have a important role of the proliferation in osteogenic differentiation. The role of cytokines such as TGF-${\beta}$1, bFGF increased hATSC's osteogenic differentiation especially when TGF-${\beta}$1 and bFGF were used together. These results suggest that adipose stromal cells with growth factors could be efficiently available for cell-based bone regeneration.

Identification of MFGE8 in mesenchymal stem cell secretome as an anti-fibrotic factor in liver fibrosis

  • Jang, Yu Jin;An, Su Yeon;Kim, Jong-Hoon
    • BMB Reports
    • /
    • v.50 no.2
    • /
    • pp.58-59
    • /
    • 2017
  • The beneficial paracrine roles of mesenchymal stem cells (MSCs) in tissue repair have potential in therapeutic strategies against various diseases. However, the key therapeutic factors secreted from MSCs and their exact molecular mechanisms of action remain unclear. In this study, the cell-free secretome of umbilical cord-derived MSCs showed significant anti-fibrotic activity in the mouse models of liver fibrosis. The involved action mechanism was the regulation of hepatic stellate cell activation by direct inhibition of the $TGF{\beta}$/Smad-signaling. Antagonizing the milk fat globule-EGF factor 8 (MFGE8) activity blocked the anti-fibrotic effects of the MSC secretome in vitro and in vivo. Moreover, MFGE8 was secreted by MSCs from the umbilical cord as well as other tissues, including teeth and bone marrow. Administration of recombinant MFGE8 protein alone had a significant anti-fibrotic effect in two different models of liver fibrosis. Additionally, MFGE8 downregulated $TGF{\beta}$ type I receptor expression by binding to ${\alpha}v{\beta}3$ integrin on HSCs. These findings revealed the potential role of MFGE8 in modulating $TGF{\beta}$-signaling. Thus, MFGE8 could serve as a novel therapeutic agent for liver fibrosis.

A ROCK Inhibitor Blocks the Inhibitory Effect of Chondroitin Sulfate Proteoglycan on Morphological Changes of Mesenchymal Stromal/Stem Cells into Neuron-Like Cells

  • Lim, Hee-Suk;Joe, Young Ae
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.447-453
    • /
    • 2013
  • Chondroitin sulfate proteoglycan (CSPG) inhibits neurite outgrowth of various neuronal cell types, and CSPG-associated inhibition of neurite outgrowth is mediated by the Rho/ROCK pathway. Mesenchymal stromal/stem cells (MSCs) have the potential to differentiate into neuron-like cells under specific conditions and have been shown to differentiate into neuron-like cells by co-treatment with the ROCK inhibitor Y27632 and the hypoxia condition mimicking agent $CoCl_2$. In this study, we addressed the hypothesis that a ROCK inhibitor might be beneficial to regenerate neurons during stem cell therapy by preventing transplanted MSCs from inhibition by CSPG in damaged tissues. Indeed, dose-dependent inhibition by CSPG pretreatment was observed during morphological changes of Wharton's jelly-derived MSCs (WJ-MSCs) induced by Y27632 alone. The formation of neurite-like structures was significantly inhibited when WJ-MSCs were pre-treated with CSPG before induction under Y27632 plus $CoCl_2$ conditions, and pretreatment with a protein kinase C inhibitor reversed such inhibition. However, CSPG treatment resulted in no significant inhibition of the WJ-MSC morphological changes into neuron-like cells after initiating induction by Y27632 plus $CoCl_2$. No marked changes were detected in expression levels of neuronal markers induced by Y27632 plus $CoCl_2$ upon CSPG treatment. CSPG also blocked the morphological changes of human bone marrow-derived MSCs into neuron-like cells under other neuronal induction condition without the ROCK inhibitor, and Y27632 pre-treatment blocked the inhibitory effect of CSPG. These results suggest that a ROCK inhibitor can be efficiently used in stem cell therapy for neuronal induction by avoiding hindrance from CSPG.

Adjuvant role of macrophages in stem cell-induced cardiac repair in rats

  • Lim, Soo yeon;Cho, Dong Im;Jeong, Hye-yun;Kang, Hye-jin;Kim, Mi Ra;Cho, Meeyoung;Kim, Yong Sook;Ahn, Youngkeun
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.1.1-1.10
    • /
    • 2018
  • Bone marrow-derived mesenchymal stem cells (BMMSCs) are used extensively for cardiac repair and interact with immune cells in the damaged heart. Macrophages are known to be modulated by stem cells, and we hypothesized that priming macrophages with BMMSCs would enhance their therapeutic efficacy. Rat bone marrow-derived macrophages (BMDMs) were stimulated by lipopolysaccharide (LPS) with or without coculture with rat BMCs. In the LPS-stimulated BMDMs, induction of the inflammatory marker iNOS was attenuated, and the anti-inflammatory marker Arg1 was markedly upregulated by coculture with BMMSCs. Myocardial infarction (MI) was induced in rats. One group was injected with BMMSCs, and a second group was injected with MIX (a mixture of BMMSCs and BMDMs after coculture). The reduction in cardiac fibrosis was greater in the MIX group than in the BMC group. Cardiac function was improved in the BMMSC group and was substantially improved in the MIX group. Angiogenesis was better in the MIX group, and anti-inflammatory macrophages were more abundant in the MIX group than in the BMMSC group. In the BMMSCs, interferon regulatory factor 5 (IRF5) was exclusively induced by coculture with macrophages. IRF5 knockdown in BMMSCs failed to suppress inflammatory marker induction in the macrophages. In this study, we demonstrated the successful application of BMDMs primed with BMMSCs as an adjuvant to cell therapy for cardiac repair.

Differentiation of Mesenchymal Stem Cell-like Cell from Feeder Free Cultured Human Embryonic Stem Cells using Direct Induction System (Feeder-free에서 배양된 인간배아줄기세포의 직접분화유도 방법을 이용한 간엽줄기세포로의 분화)

  • Lee, Min-Ji;Lee, Jae-Ho;Kim, Ju-Mi;Shin, Jeong-Min;Park, Soon-Jung;Chung, Sun-Hwa;Lee, Kyung-Il;Chae, Jung-Il;Chung, Hyung-Min
    • Reproductive and Developmental Biology
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2010
  • Mesenchymal stem cells (MSCs) have the multipotent capacity and this potential can be applied for obtaining valuable cell types which can use for cell therapy on various regenerative diseases. However, insufficient availability of cellular source is the major problem in cell therapy field using adult stem cell sources. Recently, human embryonic stem cells (hESCs) have been highlighted to overcome a limitation of adult cellular sources because they retain unlimited proliferation capacity and pluripotency. To use of hESCs in cell therapy, above all, animal pathogen free culture system and purification of a specific target cell population to avoid teratoma formation are required. In this study, we describe the differentiation of a mesenchymal stem cell-like cells population from feeder-free cultured hESCs(hESC-MSCs) using direct induction system. hESC-MSCs revealed characteristics similar to MSCs derived from bone marrow, and undifferentiated cell markers were extremely low in hESC-MSCs in RT-PCR, immunostaining and FACS analyses. Thus, this study proffer a basis of effective generation of specialized human mesenchymal stem cell types which can use for further clinical applications, from xenofree cultured hESCs using direct induction system.